Innovative systems in the production and organization of forest biomass and urban green areas
Abstract
Urban green can be understood in a broad sense, thus indicating a place for leisure and with a filter or interruption function, between the different urban densities.
The presence of a proper function of urban green significantly improves the life of those who use the spaces; the aspects are manifold: sanitary, recreational, educational, psycho-social, cultural. In the classification of urban green as furniture green and functional green
forest residues are also included, resulting from the different types of forestry interventions, commonly referred to as forest biomass. For biomass harvesting operations, for energy purposes, they include both silvicultural interventions in forests managed by forest trees and interventions in coppiced forests. This article presents the results of an experiment conducted in an experimental test field, in the province of Treviso, where there is a poplar plant with 4 years of root, and two years of stem. The tests dedicated to the assessment of productivity were conducted in June 2015 by Cnr Ivalsa, in collaboration with Mombracco Energy srl, both partners of the MCV 2.0 project, funded by the Piedmont Region. The production performance of the machine has been analyzed in real working conditions, and in different operating environments, capable of representing the conditions of use typical of the foothills area, and, in particular, squares, poplars and woods, with the aim of obtaining a evaluation of the distribution of working times, productivity, fuel consumption and quality of the wood chips. Laboratory analyzes have made it possible to evaluate the quality of the wood chips and, in particular, the grain size of the same.
Downloads
References
Alcaide, A., Palomar, E., Montero-Castillo, J. And Ribagorda, A., (2013). Anonymous authentication for privacy-preserving IoT target-driven applications. Computers & Security, 37, pp. 111-123.
Axmann, B., (2016). Digital factory - industry 4.0 (motivation, challenges and solutions). ZWF Zeitschrift fuer Wirtschaftlichen Fabrikbetrieb, 111(3), pp. 143-147.
Azuma, R., Furmanski, C., (2003). Evaluating label placement for augmented reality view management. The Second IEEE and ACM International Symposium on Mixed and Augmented Reality, 7-10, IEEE, pp. 66-75.
Baban, A., (2016). Industry 4.0: The entrepreneurial perspective. Industria, 37(3), p. 387.
Biocca, M. (2007). Macchine ed attrezzature per il verde urbano. CRA-ISMA.
Biondi, P. (1999). Meccanica agraria. UTET, Torino.
Bodria, L., Pellizzi G., Piccarolo P., (2013). Meccanica e Meccanizzazione Agricola. Edagricole, Bologna.
Brisco, B., Brown, R., Hirose, J., McNairn, H. and Staenz, K. (n.d.). Precision Agriculture and the Role of Remote Sensing: A Review. Retrieved on 1st October 2012.
Calcante A., L’automazione nelle macchine agricole Dipartimento di scienze agrarie e ambientali Milano.
Camilli, G., (2013). Veicoli Elettrici opportunità e prospettive,ANIE Innovation Cloud, Milano.
Cardinale D., D'Antonio P., Moretti N., Scalcione V. N., (2020). Risk perception in forest utilizations: experimental analysis in the Basilicata forest sites, Journal of Forestry, wild life and Environment, Vol. 1, Issue 1.
Casa R., L’applicazione dell’agricoltura di precisione per il miglioramento della gestione delle produzioni vegetali Dipartimento di scienze Agrarie e Forestali, Università degli Studi della Tuscia Viterbo 2017
Cecchini A., Plaisant A., Angeli F., Analisi e modelli per la pianificazione Teoria e pratica: lo stato dell’arte 2005 Facoltà di Architettura di Alghero.
Chalk, S. G,. Miller J. F., Power Sources J., (2006). Key challenges and recent progress in batteries, fuel cells, and hydrogen storage for clean energy systems, vol. 159, no. 1, pp. 73–80.
Chiodo E., Liberatoscioli E., Salvioni C., Le informazioni territoriali e la geomatica per l'agricoltura e lo sviluppo rurale Agriregionieuropa anno 4 n°14, Set 2018
Cook, E.A., Van Lier H.N., (1994). Landscape planning and ecological networks, Elsevier, Amsterdam.
D’Antonio P., Scalcione V. N., (2020). Digital Humanities: ICT for a Teaching of Inclusion, Agricultural Research & Technology, Volume 23 Issue 4.
D’Antonio P., Scalcione V. N., D’Antonio C.. Sustainable urban green management systems: battery powered machines and equipment. International Journal for Research in Agricultural and Food ScienceVolume-6 | Issue-3 | March,2020
D’Antonio P., V. N. Scalcione (2020), The teaching of technologies for monitoring the anthropic landscape through the development of the Internet of Things, Journal of Bioinnovation, n.JBINO204032.
D'Antonio P., N. Scalcione V., Romano F., (2020). The use of satellite technology for digital citizenship: experimental tests and investigation methods, International Journal of Food Science and Agriculture, Vol. 4, Issue 1.
D'Antonio P., Scalcione V. N., (2020). Software and satellite technologies for precision agriculture: the potential with the 5 g network, EPH - International Journal of Agriculture and Environmental ResearchVolume-6 | Issue-3 | March,2020
Eigner, M., Muggeo, C., Apostolov, H., Schäfer, P., (2016). Kern des system lifecycle management: Im kontext von industrial internet mit industrie 4.0 und internet der dinge und dienste. ZWF Zeitschrift fuer Wirtschaftlichen Fabrikbetrieb, 111(1-2), pp. 63-68.
Esri (2008). GIS for Sustainable Agriculture. GIS Best Practices. New York: ESRI Publications.
Gelleti R., Jodice R., Mauro G., Migliardi D. , Picco D., Pin M., Tomasinsig E. , Tommasoni L., C.E.T.A. – Centro di Ecologia Teorica ed Applicata di Gorizia
Hernández, J., García, L., Ayuga F., (2004). Assessment of the visual impact made on the landscape by new buildings: a methodology for site selection. Landscape and Urban Planning 68 (2004) 15–28
Hernández, J., García, L., Ayuga, F., (2004). Integration Methodologies for Visual Impact Assessment of Rural Buildings by Geographic Information Systems. Biosystems Engineering (2004) 88 (2), 255–263.
Hubert, N. van Lier., (1998). The role of land use planning in sustainable rural systems. Landscape and Urban Planning 41 1998 83–91.
Kuhn F., Horig B., Environmental remote sensing for military exercise places. Remote Sensing and GIG for Site Characterizations: Applications and Standards, ASTM STP 1279, American Society for Testing and Materials 1996.
Onorato M., Fantola F., Schirru P., Urru S., Pili D., Il webgis strumento per l'assistenza tecnica nell'agricoltura sostenibile ASITA 2016.
Peruzzi, A. (2009). La gestione fisica della flora spontanea in area urbana. Felici Editore, Pisa.
Sereni E., (1961). Storia del paesaggio agrario italiano, Laterza, Bari.
Sistemi di guida in agricoltura; Tecnologia a Rateo Variabile – Progetto AGRICARE Aprile 2017.
Sohne, W., Heinze, O. and Groten, E. (1994). Integrated INS/GPS System for High Precision Navigation Applications. Record-IEEE PLANS, Position Location and Navigation Symposium, 35(2): 310-313.
Sumner, P. E., Jay Williams E., (2013).What Size Farm Tractor Do I Need?”, University of Georgia.
Tassinari P., (2008). Le trasformazioni dei paesaggi nel territorio rurale: le ragioni del cambiamento e possibili scenari futuri. Approfondimenti interdisciplinari per la salvaguardia, la gestione e la pianificazione, Roma, Gangemi Editore.
Xiangjian, M. and Gang, L. (2007). Integrating GIS and GPS to Realise Autonomous Navigation of Farm Machinery. New Zealand Journal of Research, 50(1), 807-812.
Copyright (c) 2020 IJRDO - Journal of Agriculture and Research (ISSN: 2455-7668)
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Author(s) and co-author(s) jointly and severally represent and warrant that the Article is original with the author(s) and does not infringe any copyright or violate any other right of any third parties, and that the Article has not been published elsewhere. Author(s) agree to the terms that the IJRDO Journal will have the full right to remove the published article on any misconduct found in the published article.