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abstract
This paper contributes to the debate on oil prices modelling by proposing a
quantitative analysis of the dynamics of nominal oil prices in Namibia. The
study carries out a post assessment and validation of Random Walk and
Mean Reversion processes in modelling and forecasting futures dynamics
of nominal oil prices . In this regard, the study used data from the Namib-
ian oil market from April 1989 to April 2014. In essence, despite the recent
trends of computational and VAR models for nominal oil prices, modelling
and forecasting efforts have circumscribed random walks or mean reversion
models as viable options. Popular baseline and benchmark models include
Random Walk, Random Walk with drift, AR, MA, ARMA models. The
study investigates the suitability of the models in capturing and predicting
the data behaviours. Analysis are conducted on chosen sub-period as well
as on the overall data. From our results, a major highlight is that there is
enough evidence to conclude that oil nominal prices in Namibia are indeed
stationary and therefore suitable for analysis. The results also indicated an
increasing stochastic trend that confirms that oil prices behave randomly at
times. Summary analysis pointing to the fact that oil prices are mean revert-
ing with occurrences of random walk.
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1 introduction
Many studies have been carried out to test the financial market’s efficiency
ever since the article of Black and Scholes [2]. Apart from stocks and eq-
uities, oil prices are key components of the financial market sector and as
such, attract a lot of researches from economists, statisticians, mathemati-
cians, particularly in developed economies. However, the emerging markets
in sub-Saharan Africa and in Namibia thereof have received little attention.
The oil market is relevant not only to academics, but to consumers and pol-
icy makers as well, since a clear understanding of the functioning of the
market will translate into better decision making in terms of trade policy.
An understanding of oil prices behaviour is important in formulating poli-
cies aimed at attaining macroeconomic stability in the country, as oil price
fluctuations certainly offset economic targets .

With the increasing globalisation, nations are exposed to growing interna-
tional community. Trading in both goods and services are affected to a
larger extent by the fluctuating of oil prices. For instance, the high increases
in oil prices will lead to high prices on other commodities and financial
market. On the other hand the decrease in oil prices, has apparently fewer
effects on lowering other commodities prices.

For many years, random walk and mean reversion processes have been topi-
cal; the theory has challenged academics and finance practitioners and such,
has occupied an important place in finance, see [25]. This research is aimed
at contributing to the literature by extending the analysis to a small regional
oil market (Namibia oil market).

Oil prices have been increasing at an unprecedented pace over the past
years and the current oil market show a dramatic decrease in prices. To
explain this phenomenon, one needs to identify the tensions on oil prices
and their implications to other fossil fuels. This study examine quantitative
properties of oil prices in the recent past years, descriptive statistics and
some measure of dispersion are presented. We look at the mathematical
background underpinning both random walk and mean reversion processes.
Independence properties, Markov properties, reflection principle (see defi-
nition 1.1.1), and many others are discussed in this paper. Using the data
from the Ministry of Mines and Energy (MME) in Namibia, a procedure
including a battery of tests statistics is deigned to investigate whether the
change in oil prices in the Namibian oil market follows a random walk or a
mean reversion model.

Additional subsidiary research questions are addressed. Is there a trend
that governs the movement of oil prices? If there is a trend, it is a determin-
istic or stochastic trend? Can we predict oil prices accurately?

1.1 Mathematical Background of the models

Continuous time Markov processes such as oil prices have been the subject
of much attention in recently years. The evolution oil prices is a topic of
major concern in Africa and all over the world. We briefly present here
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random walk and mean reversion models used in modelling time series
processes.

1.1.1 Markov Property and the reflection principle

A process is Markovian, with respect to a filtration Ft, if for any fixed time
t, the future of the process is independent of Ft given Xt. A stochastic
process has the Markov property if the future of the process is conditionally
independent of the past given the present statistic. The reflection principle
state that Brownian motion reflected at time T is still a Brownian motion,
see [20].

1.1.2 Random walk

One of the simplest and yet most important models in oil prices change
is the random walk model. The term random walk was first introduced in
mathematics by Karl Pearson in 1905. Pearson [21] conceptualised a random
walk as a mathematical formalisation of a path that consists of a succession
of random steps away from previous positions. The steps are independently
and identically distributed (iid) in the sense that there are more occurrences
of the randomness of their nature than consequences of preceding steps. For
example, the price of a fluctuating stock, the financial status of a gambler, or
the drunk man finding his way home. Figure 1.1 below gives an illustrative
random walk process.

A random walk process which is regarded by Fuma [9] as a Weak Form
Market Efficiency (WFME), assumes that only past prices data are consid-
ered when evaluating future oil prices. This rules out any manner of future
prices prediction based on anything other than past oil prices data and it
assumes that each successive changes have zero correlation. According to
this perspective, a look back at historical prices is worthless.
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There are two different types of random walks which are of interest for
the vast majority of applications. A simple random walk process and a ran-
dom walk process with drift. Pearson [21] briefly define these two models
as follows: a simple random walk is defined as a process where the current
value of a variable is composed of the past value plus an error term defined
as a white noise.

While a random walk model is said to have ”drift” if the distribution of
steps has a non-zero mean. This process shows both a deterministic trend
called the "drift" and a stochastic trend called the "white noise".

1.1.3 Mean reversion

"What goes up must come down"- This simple wisdom of law of gravity
turns out to be a highly non-trivial fact about prices. This was interpreted
as evidence of mean reversion, that is a force that drives prices back to a cer-
tain medium level after they went above or below it. In other words, mean
reversion is a concept of a process that returns to its mean or average.

Mean reversion or Schwartz [26] one-factor model, allows for capturing
stochastic behaviour of oil prices. This is based on the assumption that
logarithms of oil prices revert to their long term mean. Some researchers re-
fer to mean reversion as long-run due to supply-demand equilibrium. This
means that prices tend to revert to its medium trend, (the trend is a product
of factors which include but not limited to, marginal cost, production cost,
inventory capacity and competitions). Basically the model has two compo-
nents: deterministic terms such as, level of mean reversion and speed of
mean reversion and a stochastic random which is known as distribution
properties such as, white noise and volatility which set the prices back to its
trend. Figure 1.2 illustrates graphically a mean reversion.

Figure 1.2. The concept of mean reversion [1].

1.2 Models Comparison

Modeling and forecasting efforts have circumscribed random walks or mean-
reversion processes as viable options. Let’s look at some possible expecta-
tions, Table 1.1, gives this summary.

Table 1.1 Comparison of Random walk and Mean Reversion
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Random walk Mean reversion

Changes in price are independent and identical Prices rise based on previous Prices

Deterministic trend Volatility determines the price levels

Change in price has no history Price decision rules are explicit and intuitive

No tractable solution Lead to tractable solution for the price

This Paper will be organised as follows: The current section provides an
introduction to the paper, and gives the basic definitions. Section 2 gives
a literature review related to the topic. The third section presents of the
modelling techniques that were used . Section 4 and 5 visualises the data
and presents the results respectively. Finally the conclusion and remarks
and future directions are given.

2 literature review
There is nothing strange about massive attention to oil prices, since it is so
deeply integrated in the world’s economy. Oil is a national strategic resource
but also used by roughly each individual household. No surprise that oil
prices were never safely under control, and factors behind price changes are
still not revealed with absolute confidence. Moreover, with oil significance
coming onto new levels, the role it plays in the financial markets and its po-
tential drivers appear to complicate the understanding of their behaviours
even more. There are different ways to investigate oil price behaviours. First,
it is necessary to understand basic fundamentals of the global petroleum in-
dustry and market, and that the oil price is on the background of macro-
and microeconomic structures activity.

The first significant attempt to develop a structural model on oil as a scarce
resource belongs to Hotelling [11]. Indirectly Hotelling rule is tested by Lein-
ert [14]. His paper finds that crude oil price adjusts or falls to unexpected
news about oil field discoveries. One of the attempts to test the Hotelling
model belongs to Lin [15], where she used annual data for oil prices and
consumption to calibrate the model for different competition settings. She
found that prior to 1973 data, the best fitting data model was the one assum-
ing competitive market while afterwards, she indicated that prices in recent
years were strongly influenced by OPEC. However the performance of the
simple Hotelling model was considered to be poor.

Botha [4] argued that, considerable evidence has demonstrated that in highly
competitive and organised markets price changes will be close to random
walk. The hypothesis is that in an efficient market characterised by well-
informed profit maximising participants, and competing actively with one
another, one can not predict future price changes on the basis of the history
of prices behaviour only. Successive changes in the variable are done inde-
pendently from a probability distribution with mean zero. The new price is
therefore a realisation of a variable independent of that, that produced the
preceding price. He used the idea of Random walk with drift, given by the
equation below :

Yt = Yt−1 + µt + c, (1)
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where: Yt is the spot price log return, Yt−1 is the past price log return, µt
is the white noise and c is the constant called the "drift". This means that
on the average the process will tend to move in the direction given by the
sign of the constant ’c’. Botha used data that consist of daily prices on a
time period running from April 1968 to September 1975. With the help of
empirical results from autocorrelation and running test, he concluded that
a random walk model offers a satisfactory explanation of the movement of
daily price changes.

Tvedt [28] in her PhD dissertation looks at two alternative ways, Ornstein-
Uhlenbeck process and a geometric mean reversion process to model the
stochastic nature of the time charter equivalent spot rate in the market for
very large crude carries. Earlier, Bjerksund and Steinar [1] had showed that
the freight rates follow an Ornstein-Uhlenbeck process. Tvedt followed up
this approach, by suggesting a geometric mean reversion process as an alter-
native to Ornstein-Uhlenbeck process. She argued that Ornstein-Uhlenbeck
process does not give a very realistic description of the spot freight rates,
because it is not downward restricted, while in reality prices cannot take
negative values for example. It is useful to try a process that is downward
restricted in order to describe both the spot rate and the time charter equiv-
alent rate. Such a process is given by:

dYt = α(Y
∗ − ln Yt)Ytdt+ σYtdµt, (2)

where Yt is the spot price log return, Y∗ is the level of mean reversion, α is
the speed of mean reversion, σ is the volatility and µt is the white noise. A
smaller p-value would reject the null hypothesis of random walk. Using the
above process, Tvedt found out that the estimated rate of mean reversion α
is 0.003289, the volatility σ is 0.1007 and the mean reversion level is 10.58.
This statistic rejects the idea of random walk and it supports the existence
of mean reversion process in very large crude carries.

Schwartz [26] compared performance of the three models: namely, Mean
Reversion, Geometric Brownian Motion (GBM) with convenience yield and
the stochastic interest rate. His investigations show evidence of mean rever-
sion in crude oil prices, when he finds that all parameters are statistically
significant. He also indicated that oil prices can be modelled as a GBM, but
with convenience yield included in the drift.

Blanco and Saronow [3] made theirs, the folksy wisdom that turned out
to be a non-trivial factor about stock market, " What goes up must come
down". They modified assumptions of a random walk process, to test if
energy prices are mean reverting:

Yt+1 − Yt = α(Y
∗ − Yt) + σµt (3)

where Y∗ is the level mean reversion, α is the speed of mean reversion, σ is
the volatility and µ is the random shock (white noise) to the log return price
Yt. The authors partitioned the periods under consideration into smaller
periods of one hour over a single year. The authors, claim that the speed
at which prices revert to their long run level may depend on several factors
such as nature, magnitude and the direction of the price shock. Nevertheless
mean reversion in energy prices is well supported by the empirical studies
of Blanco and Saronow in 2001.
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Rodchenk* [24] extends Pindyck study by applying a shifting trend model.
The shifting trend model has an autoregressive process in error terms rather
than Pindyck white noise process. The advantage of this model is that, it
is not very influenced by the presence of large, long-lived increases and
decreases in energy prices and produces of robust long-term forecasts. Rod-
chenk* used the annual data for 1870-1996 to confirmed Pindyck results.
The author states that the shortcoming of the model is the inability to con-
sider the impact of OPEC’s decisions.

In 2006, Knetch [13] analysed the concept of convenience yield. The
author proved both theoretically and empirically existence of convenience
yields and their usefulness for crude oil price forecasting. Geman[10] pro-
posed some mathematical elements towards a definition of mean reversion
that would not be reduced to the form of the drift in stochastic differential
equations. The author used the West Texas International (WTI) oil prices
over the period of January 1994 to October 2004. Using the well known
Augmented Dickey-Fuller (ADF) test, he obtained the p-value of 0.651 for
spot prices over the period of January 1994 to October 2004. These results
reject the mean reversion assumption over the whole period and confirmed
that the log crude oil prices follow the random walk during this period.

Chikobvu and Chinhamu [5], investigated whether crude oil prices are
mean reversion or follow a random walk process at all time. The authors
used the following model to investigate the statistical properties of crude oil
price:

Yt = αYt+1 + µt, (4)

where, α - the speed of mean reversion and all variables are defined as in
equation (1).

Chikobvu and Chinhamu used the Augmented Dickey-Fuller (ADF) test
and the Garch model with time-varying properties approach to find whether
crude oil prices follow a random walk or a mean reversion process. They
used the monthly crude oil prices for the period of January 1980 to Septem-
ber 2010. These data were divided into two segments, namely January 1980

to January 1994 and from February 1994 to September 2010. The ADF test
showed that crude oil prices follow a mean reversion process in the first
segment of January 1980 to January 1994, as it gave the ADF test statistic
for log crude oil price data of -3.599062 with p-value of 0.0829. For the sec-
ond portion the ADF test statistic for log crude oil prices data is -2.963231

and the p-value is 0.1459 which is more than one percent increase from the
previous segment . These results implied that crude oil prices follow a ran-
dom walk process in the second segment. Results from the Garch model
with time-varying parameters also supported that crude oil prices follow a
mean reversion on the first period of January (1980 - 1994), random walk
on the period of February 1994 to September 2010. The authors suggested
additional work to be done as there are still gaps and updates that need to
be taken care of, i.e looking at the size of the period under consideration.
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3 modelling with random walk and mean
reversion

3.1 Introduction

In Section 2 we had an overview of the variety of theoretical models and
Mathematical tools used to capture oil price movements. The existence
of mathematical formulae and concepts depend on the assumptions made
about oil prices and how different researchers perceive them. This section is
focused on mathematical modelling techniques, their theoretical framework
and the implications they have in explaining oil prices fluctuations.

3.2 Data

The data used in this study are from The Ministry of Mines and Energy
(MME) in Namibia. The period is from April 1989 to April 2014 (25 years).
This is the only period for which data are available in the country. As pro-
posed by [5], huge data set is required to ensure reliable conclusions. The
data are divided into five year periods, in a triple bid to neutralise or look
into: one possible sectional asymmetric effects of volatility, two impacts of
precautionary demand (persistent or transitory effects), and three bigger
likelihood of capturing jumps or reverting tendencies of prices, as the later
occur mostly for shorter periods of time. This approach has the convenient
bonus of facilitating the analysis. All data are transformed into monthly log
returns series by taking the first difference in logarithms of the price.

To start with, lets consider a one-period simple return of oil price. Tsay
[27] calculate one-period simple returns as follow;

1+ Rt =
Xt

Xt−1
, (5)

where Rt is the one-period simple return, Xt is the price of the oil at time t.
For multi-period, simple return is given by

1+ Rt(k) =
Xt

Xt−k
, (6)

where k is the number of period under consideration. Equation (6) can also
be express as

Rt(k) =
Xt −Xt−k
Xt−k

. (7)

Equation (7) is also know as the Compound return and Rt(k) is called k-
period return.

A continuously compounded oil return can be calculated as the natural log-
arithm of the simple return of the oil prices. From (6), we have

rt = log(1+ Rt) = log(
Xt

Xt−1
) = log(Xt) − log(Xt−1) = Yt − Yt−1. (8)
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The continuously compounded multi-periods return is given as the sum of
the continuously compounded one period returns and is given by

rt(k) = log(1+ Rt(k)),
= log[(1+ Rt)(1+ Rt−1)(1+ Rt−2)...(1+ Rt−k+1)],
= log(1+Rt)+ log(1+Rt−1)+ log(1+Rt−2)+ ...+ log(1+Rt−k+1),

= rt + rt−1 + rt−2 + ... + rt−k+1. (9)

3.3 Random walk model

In Section 1, we looked at the general definition of random walk. A mathe-
matical formulation of a random walk process is given as follows:

Yt = βYt−1 + µt, (10)

where Yt is the logarithm of the oil price at time t, β is real constant and µt
is a sequence of uncorrelated random variables called white noise say, {wi}
that are independent and identically distributed (iid). If each wi is normally
distributed, then a white noise is a Gaussian white noise with the following
properties:

Mean = E(wi) = 0, (11)

Cov(wi,wj) = 0. (12)

The hypothesis of random walk process is that, oil price returns are indepen-
dent random variables and if the time intervals are equal, then the returns
can be taken to be identically distributed. Let X(ti) denote the oil price at
time ti, then the simple returns

X(t1)

X(t0)
,
X(t2)

X(t1)
, ...,

X(tn)

X(tn−1)
, (13)

are independent and identically distributed (iid) random variables. To show
that oil price follows a geometric random walk, let us consider the following:

X(tn)
X(t0)

=
X(tn)
X(tn−1)

· X(tn−1)
X(tn−2)

· ... · X(t2)
X(t1)

· X(t1)
X(t0)

,

= H(tn) ·H(tn−1) · ... ·H(t2) ·H(t1), (14)

where H(ti) is a simple return at time t. Therefore X(tn) can be represented
as;

X(tn) = X(t0)

n∏
i=1

H(ti). (15)

Taking the natural logarithms of both side we obtain;
log[X(tn)] = log[X(t0)

∏n
i=1H(ti)],

= log[X(t0)] + log[
∏n
i=1H(ti)],

= log[X(t0)] +
n∑
i=1

log[H(ti)]. (16)

Equation (16) is similar to equation (10) if Yt, Yt−1, µt are equated to
log[X(tn)], log[X(t0)],

∑n
i=1 log[H(ti)] respectively and β = 1, see [23].
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3.4 Mean Reversion model

Oil prices paths can also be described by the theoretical stochastic differen-
tial equation of the form:

dYt = α(Y
∗ − Yt)dt+ σµt, (17)

where Xt is the oil price at time t, Yt = log(Xt) is logarithm of oil price at
time t. α and Y∗ are constants indicating the speed and the level of mean
reversion respectively. σ is a volatility of the log oil prices and is assumed
to be constant in this setting. µt represents the stochastic behavior and its
µt ∼ N(0,dt), where dt is the time increment. This process is called "mean
reversion".

Knowing that Yt denotes oil log price, equation (17) can be rewritten as

follows:
Yt − Yt−1 = α(Y∗ − Yt−1)4t+ σµt,

Yt = αY
∗4t+ Yt−1 −αYt−14t+ σµt,

= αY∗4t+ (1−α4t)Yt−1 + σµt,

Yt = Qt + θtYt−1 +∧t, (18)

where dt is replaced with a discrete time series 4t. From equation (18),
4t = 1

12 because data are transformed into monthly log returns. Qt =

αY∗4t called the regression intercepts, θt = 1−α4t and the residual ∧t ∼
N(0,σ24t). At this point Q and θ are assumed to be constants. Now mean
reversion parameters can be evaluated as follows:

α =
1− θ

4t
, (19)

Y∗ =
Q

α4t
. (20)

Since ∧t ∼ N(0,σ24t), variance of the residual can be evaluated as:
var(∧t) = σ

24t, thus;

σ =

√
var(∧t)

4t
. (21)

3.5 Analysis

We paid attention to our candidates models for our modelling random walks
and mean reversion models. We clarified the underlying assumptions, prop-
erties and parameters of both models. Let’s discuss now the tests statistic
that will hint us as whether nominal oil prices are random walk or a mean
reverting.

3.5.1 Testing for Normality

The main aim of this test is to accept or reject the idea that oil returns are
independent and identically distributed (iid), it is aimed at showing that
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oil returns are normal random variables, with finite mean and variance. To
do this, the only two parameters are needed to completely describe the
normality of returns: the mean and the variance. Oil return is said to be
normally distributed if the log return has fixed mean and variance. Mean
and variance are simple return, and the following formulae are used to
calculate these two parameters:

E(Rt) = e
µ̃+ σ̃2

2 − 1, (22)

V(Rt) = e
(2µ̃+σ̃2)(eσ̃

2
− 1), (23)

where µ̃ is the mean and σ̃ is the variance of the normally distributed log
returns [27]. If E1 and V1 are mean and variance of a simple log return Rt
respectively, which is lognormally distributed. Then mean and variance of
the corresponding log return rt can be found as in [27] and are given by:

E(rt) = log

[
E1 + 1√
1+ V1

(1+E1)2

]
, (24)

V(rt) = log

[
1+

V1
(1+ E1)2

]
. (25)

Since the sum of finite log return of iid normal random variables is normal
distributed, then under the same normal assumption of rt, one can have
rt(k) to be also normally distributed. At this point take note that, this
lognormal assumption is not consistent to all the properties of history return
since it depends more on the period under consideration k.

3.5.2 Augmented Dickey-Fuller (ADF) unit root test

To test whether the log return of oil price Yt follows a random walk or not,
we use the model

Yt = βYt−1 + µt, (26)

and all the parameters are as defined in equation (10). Considering the null
hypothesis H0: β = 1. If |β| < 1, then Yt is stationary converging to a
certain trend and sometimes can be seen as a mean reversion process. If the
|β| > 1, then (26) is not stationary, the mean and variance of Yt are growing
exponentially as time goes on. The maximum estimator of β is the Least
Square (LS) estimator;

β̂ =

∑T
t+1 Yt−1Yt∑T
t=1 Y

2
t−1

, (27)

for H0: β = 1 the appropriate regression residual mean square can be
calculated as follows [7];

σ̂2µt =

∑T
t=1(Yt − β̂Yt−1)

2

T − 1
, (28)

where Y0 = 0 and T is the sample size. To calculate the time ratio (τ̂), the
following formula is considered;

τ̂ =
β̂− 1

std(β̂)
, (29)
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where std(β̂) = σ̂
√∑T

t=1 Y
2
t−1; see [7].

If we use Monte Carlo method to compare β̂ and τ̂, the null hypothesis
(H0:β = 1) can be consider or rejected.

3.5.3 Variance ratio test

The variance ratio test was developed by Lo and Mackeinly [17] in 1987.
The hypothesis is that; given a stochastic process defined by equation (16)
which is iid, then its random walk is linear. This means that the variance
of (Yt − Yt−k) is k times the variance of (Yt − Yt−1), where k is the number
of periods under consideration. Considering the log return of oil price (Yt),
the variance ratio, Var(k) can be defined as in [17]:

Var(k) =
σ̂2(k)

σ̂2(1)
, (30)

where

σ̂2(1) =
1

T − 1

T∑
t=1

(Yt − Yt−1 − µ̂)
2, (31)

and

µ̂ =
1

T

T∑
t−1

(Yt − Yt−1) =
1

T
(YT − Y0), (32)

while

σ̂2(k) =
1

η

T∑
t=k

(Yt − Yt−k − kµ̂)
2, (33)

and

η = k(T − k+ 1)

(
1−

k

T

)
, (34)

where YT is the last observation of the log return and Y0 is the initial ob-
servation. Under the null hypothesis of random walk, the estimators σ̂2(1)
and σ̂2(k) are used to test the presence of random walk in Yt. The oil prices
log return Yt is said to be a random walk process if σ̂2(k) − σ̂2(1) is ap-

proximately zero. Alternatively σ̂2(k)
σ̂2(1)

− 1 should converge to zero as well.
To calculate the standard normal test statistic used to test the null hypothe-
sis of random walk under homoscedasticity hypothesis Z(k), the following
formula is considered as in [17]:

Z1(k) =
(VR(k) − 1)√

φ(k)
∼ N(0, 1), (35)

where

φ(k) =
2(2k− 1)(k− 1)

3kT
, (36)

and to test the standard normal test statistic for heteroscedasticity-consistent
Z2, we use the following formula:

Z2(k) =
(VR(k) − 1)√

φ(k)
∼ N(0, 1), (37)
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where

φ(k) =

k−1∑
j=1

[
2(k− j)

k

]2
δ(j), (38)

and

δ(j) =

∑T
t=j+1(Yt − Yt−1 − µ̂)

2(Yt−j − Yt−j−1 − µ̂)
2[∑T

t=1(Yt − Yt−1 − µ̂)
2

]2 . (39)

3.5.4 Multiple Variance ratio test

Multiple variance ratio test is the extension of Lo and MacKinly [18] conven-
tional variance test as the studentized maximum module (SMM) statistics.
Chow and Denning [6] developed a simple multiple variance ratio test to
control the test size of variance ratio estimates in a large Type I error, which
conventional variance ratio test fails to control. They stress that the two
statistics Z1(k) and Z2(k) can only test the individual variance ratio for a
given k value. Under the null hypothesis any variance ratio should be equal
to one, so that it’s easy to select all variance ratios with unity. Let us con-
sider the positive integer ki, then the null hypothesis is H0: Var(ki) = 1 for
i = 1, 2, 3, 4, ...,n. The test statistic is defined as follows:

Z∗
1(k) = Max16i6n|Z1(ki)|, (40)

Z∗
2(k) = Max16i6n|Z2(ki)|. (41)

The rejection of the null hypothesis depends on the maximum absolute
value of the individual variance ratio test statistics. For a large sample size
T , the null hypothesis is rejected at the level α significance if Z∗

1 is bigger
than the [1−(α

∗
2 )] the percentile of the standard normal distribution, where

α∗ = 1− (1−α)
1
n . Since the sample size is finite, critical values obtained by

[6] will be used.

3.5.5 Ranks and Signs non-parametric Variance Ratio (VR) test

The advantages of ranks and signs based tests developed by Wright [30]
is, that it can calculate the exact distributions without concerns about the
size of distortion. Secondary ranks and signs are regarded as a powerful
test if data turn out to be highly non-normal. Wright also proposed non-
parametric variance ratio tests using ranks and signs of the returns and
shows that they are powerful compare to variance ratio tests.

rank-based variance ratio (vr) test Suppose r̂(Yt) is the rank of oil
return Yt among Y1, Y2, Y3, ...,YT , with a standardised zero mean and a unit
variance. Define

r̂1t =

(
r̂(Yt) −

T+1
2

)√
(T−1)(T+1)

12

. (42)
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If we substitute r̂1t with Yt in the definition of Z1 test statistic (in equation
(33)) we get:

R1(q) =

(∑T
k+1(r̂

2
1t + r̂

2
1t−1 + ... + r̂21t−k+1
k
∑T
1 r̂
2
1t

− 1

)
×
(
2(2k− 1)(k− 1)

3kT

)− 1
2

,

(43)

and

R∗2(q) =

(∑T
k+1(r̂

∗2
1t + r̂

∗2
1t−1 + ... + r̂∗21t−k+1
k
∑T
1 r̂

∗2
1t

− 1

)
×
(
2(2k− 1)(k− 1)

3kT

)− 1
2

,

(44)

where r̂∗1t is a standardised series from any permutation 1,2,3,...,T.

sign-based variance ratio (vr) test Let u(Yt,k) = 1(Yt > k) − 1
2 .

Then u(Yt, 0) is 12 if Yt > 0 and −12 otherwise. Let St = 2u(Yt, 0) = 2u(µt, 0).
This shows that St is iid with mean zero and a unit variance. So each St can
be equal to 1 with probability 1

2 and can be −1 otherwise. The sign-based
variance ratio test statistic S1 can be defined as:

S1 =

(∑T
k+1(st + st−1 + ... + s2t−k+1

k
∑T
1 s
2
t

− 1

)
×
(
2(2k− 1)(k− 1)

3kT

)− 1
2

. (45)

3.5.6 Q-statistic test

Q-statistical test well known as "Ljung-Box Q-statistic test" was developed
by Ljung and Box [16]. The test is aimed to test the null hypothesis, H0: Oil
price return are autocorrelated. Let consider the stochastic properties of the
residuals (white noise) µt = (µ1,µ2,µ3, ...,µT ) of the oil price log returns,
where µt is as defined in equation (1). The residuals can be defined as;

r̂(L) =

∑T
t=L+1 µtµ(t−L)∑T

t=1 µ
2
t

, (46)

where L is a lag (L = 1, 2, 3......), T is the sample size, r̂(L) is the L-residual
and t is the time. Given the model above, the corresponding Ljung-Box
Q-statistic can be calculated as follows;

Q̂(r̂) = T(T + 2)

n∑
L=1

r̂2(L)

(T − L)
(47)

which is asymptotically distributed as χ2 with n−q degree of freedom (d.f)
where q denotes the number of parameters in the model and n is LT . If the
model is autoregressive-moving average, then q is the sum of the autore-
gressive order and the moving average order, see [16] for more information.

4 presentation/exploration of data
Before proceeding with any in-depth analysis,let us have a look at the raw
data in consideration. This will give us a good general impression about the
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summary statistics, and can also assist detecting possible mistakes at early
stage of our analysis. The data cover the period of past 25 years (15 April
1989 - 15 April 2014) with around 9132 observation (records), the data are
divided into five equal periods of five years for the analytical reasons pre-
sented above, accounting for volatility, impacts of precautionary demand, as
well as convenience. All the analysis were conducted on each periods and
on the overall data. To start with, we visualise the data. A histogram of the
data set, and histograms of data segments. Figure 4.1 shows the histogram
of each period as indicated below.
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Figure 4.1 Histogram of oil prices by periods.

According to the graphs above, overall the oil prices bellow N$ 2.00 have
been mostly observed, while of around N$ 5.0 and more than N$ 12.00 were
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not really popular. In Period 1, the prices are between N$ 1.00 and N$ 1.50

are almost equally observed. Meanwhile, there was little observations of oil
prices between N$1.60 and N$1.80 in Period 2. In Period 3,the price of N$
3.50 to N$ 4.00 were mostly observed. The oil prices N$ 3.00 to N$ 12.00

have been recorded at the average of 200 observations in Period 4 and Pe-
riod 5.

The Table 4.1 below shows the summary of some of the basic statistic of
the whole data grouped by periods. Figure 4.2 gives the plots of nominal
prices over each chosen sub-period.

Mean Median Mode Standard
Devia-
tion

Minimum Maximum Count

Period
1

1.3027 1.38 1.53 0.18054 1.04 1.53 1826

Period
2

1.7653 1.89 1.51 0.19003 1.51 2.02 1826

Period
3

3.3399 3.54 3.67 0.5449 1.91 3.9 1827

Period
4

5.7999 5.66 3.9 1.6047 3.41 9.73 1826

Period
5

8.8407 9.27 10.74 1.5856 6.03 11.04 1826

Overall 4.2096 3.5 3.9 2.9870 1.04 11.04 9131

Table 4.1 Basic statistic results

Figure 4.2 Graphs of oil prices by periods.

The basic statistics and the graphs above overall shows that oil prices had
been increasing over the periods under consideration. It also indicates that,
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there are some up and down in the movements of oil prices. The graphs
in figure 4.1 shows that in some periods there are slightly smooth in the
change, Period 3 and Period 5, while on the other hand, Period 1, period 2

and Period 4 present some dramatic increases/decrease in the oil prices.

From this summary picture the question of whether or not one can find
a trend that governs the movement of oil prices is further motivated. The
next section will discuss the results and findings.

5 results and discussion

5.1 Introduction

This section gives a report of the results/findings from the analysis tech-
niques presented in Section 3. The results are interpreted and discussed in
full details. We try to give a clear meaning, as the main objective of the
section is to exhibit clear supportive evidence that elucidates the various
questions evoked in the previous section. These results naturally feed the
general conclusion on whether oil prices are better described by random
walk or mean reversion processes.

All the analysis below are conducted using MATLAB, hValue = 1 indicates
the rejection of the null hypothesis the test, hValue = 0 means accepting the
test null hypothesis. The pValues indicating the strength at which the null
hypothesis of the test are rejected or accepted are also given.

5.2 Testing for Normality

To test for the data normality, Kolmogorov-Smirnov (KS) and Adreason-
Darling (AS) tests are performed on the in-sample data. For all sub-periods,
the two tests reject the null hypothesis (H0) at 5% significance, the corre-
sponding p-value of both tests is approximately zero. Figure 5.1 shows the
graph of oil prices compared to the standard normal increment. The graph
clearly shows that oil price are not normally distributed. The approach de-
vised for our analysis made provision for that eventuality. Some of the tests
work well with non normal data. The rank sign test for example.
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Figure 5.1 Graph of Kolmogorov-Smirnov (KS) test

5.3 Stationarity Test Results

Using the Augmented Dickey-Fuller (ADF) test, the test results show that
there is no unit root test at 10%, 5%, or 1% significance level. With the
p-value of 0.0010, there is enough evidence to conclude that the oil prices
are stationary. All the ADF statistics support the idea that oil prices are
stationary under the considered period, see table 5.1 below.

Period
1

Period
2

Period
3

Period
4

Period
5

Overall
Period

h-Value 1 1 1 1 1 1

p-Value 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010

cValue -
1.9416

-
1.9416

-
1.9416

-
1.9416

-
1.9416

-1.9416

stat -
42.6966

-
42.6966

-
42.6966

-
42.7083

-
42.6966

-95.5353

Table 5.1 ADF test results

5.4 Variance ratio (VR) test

Variance ratio test is used for testing for the presence of randomness in
the time series. To test whether oil prices are random walk, each period
is divided into six segments to thoroughly investigate whether oil price
variations are independently and identically distributed (iid). The results
of VR test indicates the presence of random walk in period 4. There is
also some signs of random walk in the first five years as well as in the last
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five years. However the large part of the data in consideration rejects the
hypothesis of random walk in oil prices. Table 5.2 show the outcome results
of Variance ratio test. Figure 5.2 shows stationary differenced returns.

Table 5.2 Variance ratio test results

Figure 5.2 Differenced returns.

5.5 Multiple Variance ratio test

This test is aimed at the variance across all the five periods if they are equal.
The multiple variance test is conducted at all the five periods. Table 5.3
below has the outcome results.
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Table 5.3. Results from Multiple Variance ratio test

The results in Table 5.3 reject the null hypothesis at 5% significant level. This
means that the means are different across the five periods under considera-
tion. Nevertheless, the mean of Period 1 and Period 2 are significantly equal
as it was a case with variance ratio VR. Figure 5.3 seems also to confirm this
result.

Figure 5.3. Mean level of the five periods.

5.6 Ranks and Signs non-parametric VR test

The Ranks and Signs test is regarded as a stronger test compare to Variance
Ratio (VR) test, when it comes to the test for the present of random walk in
time series data. As it is the case with VR test, ranks and signs test also con-
firmed the present of the random walk in both first and four period. Equally
the test fails to provide enough evidence to reject presence of random walk
in Period 5 as it only produce the p-value slight bigger than the 5% signifi-
cant level. These results show the presence of random walk in Periods 1, 4
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and 5, but reject the null hypothesis of random walk for both Period 2 and
Period 3. However additional investigations are needed as far as period 5 is
concerned. Table 5.4 presents the numerical results.

Period
1

Period
2

Period
3

Period
4

Period
5

Overall
Period

h-Value 0 0 1 0 1 1

p-Value 0.375 0.1516 0.0139 0 0.0053 0.0000198

Stas=Zval 2.4606 1.7538 2.7868 4.2667

Signedrank 30.5 66.5 142 262 460.5 3835

Table 5.4 Ranks and Signs test results

5.7 Q-statistic test

According to Lung-Box Q-statistic test, oil prices are autocorrelated. In all
periods, the test strongly rejects the null hypothesis at 5%. These results
indicate that today prices have a statistically significant influence in deter-
mining future prices. Nonetheless historical prices cannot be considered
as major indicators of present prices. The best interpretation of this result
will say that oil prices only depend on the immediate past prices plus some
random adjustments.

5.8 Johansen Cointegration test

The ADF test shows that data are stationary. The best way to test for the
cointegration is to use the Johansen cointegration (JC) test. The JC test im-
plies that there is a linear trend among the data. Table 5.5 Shows the results
of the Johansen cointegration test.
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Table 5.5 Johansen cointegration test results

The above results favour the null hypothesis of the Johansen cointegra-
tion test. While there was many developments that can cause permanent
changes in the oil prices, there is also a long-run equilibrium relation
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6 conclusion and recommendations
Our results indicated that nominal oil price returns on the sub-periods of
our data set are stationary, according to the ADF test. This implies stabil-
ity of the models on sub-periods data and that analysis conclusions data
can be validated. However the overall data set is non stationary, and not
normally distributed, which makes it difficult to get very accurate overall
results. Nevertheless, our analysis happens to give some good outcomes,
the tests indicate that the prices only depend on the few past prices, but
not on the entire history. The presence of random walks in Period 1, Period
4, slightly less in Period 5 asserts that while there are some up and down
movements, oil prices are increasing with a positive stochastic trend . The
results are more in support of the conclusion that oil prices follow a mean
reversion process, with untimely occurrences of random walk. The causes
of randomness need to be further investigated looking at the global macroe-
conomic stability, political factors, OPEP decisions, and level of inventories.
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