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Abstract 
The global financial market is characterized by inherent and evolving uncertainty. Measuring this uncertainty plays a 

crucial role in managing risk associated with financial derivatives. Various mathematical models, including robust risk 

measures, model risk measures, and locally risk-minimizing strategies, have been employed to quantify this uncertainty. 

This paper contributes to this ongoing research by proposing novel approaches to quantify uncertainty in financial 

derivatives, specifically by leveraging entropy measures with stochastic probability density functions. Traditionally, 

entropy models have relied on Gaussian probability density functions. This paper proposes an alternative approach using 

stochastic probability density functions, to capture the inherent randomness of uncertainty in financial markets. 

Furthermore, the use of this developed stochastic density function will achieve linear and sub-linear scaling without 

relying on the sparsity of the density matrix nor on the design of the subsystem interaction in embedding schemes. We 

demonstrate that this approach adheres to key entropy properties and can be extended to various entropy families. 

Empirical results show that the proposed model using stochastic probabilities outperforms models using normal 

probabilities, potentially representing a significant advancement in quantifying uncertainty with entropy measures. 
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Introduction 

In the ever-changing world of finance, where fortunes and losses are made under the shadow of uncertainty, entropy 

emerges as a powerful tool for measuring the unknowable. In the context of financial derivatives, these complex 

instruments designed to manage risk, ironically, carry their own inherent risk stemming from the unpredictable nature of 

the underlying assets [1], [2]. Accurately gauging and accounting for this uncertainty is crucial for navigating the financial 

tightrope with confidence, and entropy steps in as a reliable guide [3]. 

 

Why Measure Uncertainty in Derivatives? 

Financial derivatives like options, futures, swaps, and forwards derive their value from the price of the underlying asset. 

Acknowledging that predicting the future with perfect accuracy seems to be impossible, because a multitude of factors, 

from geopolitical tensions to economic data releases, can send markets into unpredictable gyrations. This inherent 

volatility translates into uncertainty about the ultimate payoff of a derivative contract [4], [5]. 

Measuring uncertainty allows market participants to: 

Quantify risk: By understanding the potential range of outcomes associated with a derivative position, investors can make 

informed decisions about hedging strategies and risk mitigation. 

Price derivatives accurately: Accurately reflecting uncertainty in pricing models leads to fairer and more efficient 

markets. 

Improve portfolio management: Uncertainty measures can be used to optimize portfolio allocation and diversification, 

ensuring a balance between risk and return. 

 

Entropy to the Rescue: Measuring the uncertainty 

So, how exactly does entropy help us grapple with the uncertainty in derivatives? Imagine entropy as a gauge on your 

car’s dashboard. A low entropy reading, with the needle barely budging, indicates a smooth, predictable highway ahead. 

Conversely, a high entropy reading, with the needle bouncing wildly, warns of a treacherous, obstacle-ridden road. In the 

financial world, entropy acts as that needle, quantifying the” bumpiness” or unpredictability of the market landscape. 

There are several methods that exist for measuring uncertainty in derivatives using entropy [6],[7], each with own 

strengths and limitations, this study acknowledges a few below: 

1. Volatility: This widely used metric measures the degree of price fluctuations in the underlying asset. Higher volatility 

implies greater uncertainty about future prices. 

2. Value at Risk (VaR): VaR estimates the maximum potential loss of a portfolio within a given confidence level over a 

specific time horizon. It provides a quantifiable snapshot of the portfolio’s exposure to uncertainty. 

3. Scenario analysis: This qualitative approach involves constructing various hypothetical scenarios representing 

potential market outcomes and assessing their impact on derivative positions. 

4. Monte Carlo simulations: This stochastic method simulates thousands of possible price paths for the underlying 

asset, generating a probability distribution of potential payoffs for the derivative. 

 

Uncertainty is an inescapable reality in the world of finance, and nowhere is its presence more keenly felt than in the realm 

of derivatives. By employing effective methods for measuring and managing uncertainty using entropy, market 

participants can navigate the ever-shifting landscape of financial markets with greater confidence and make informed 

decisions that protect their capital and maximize their returns. Remember, while uncertainty may cast a long shadow, it is 

by embracing its presence and developing strategies to mitigate its impact that we can truly unlock the potential of financial 

derivatives as powerful tools for managing risk and achieving financial goals. 

Concept of entropy model 

Consider a stochastic process defined by a collection of random variables indexed by time. In a discrete time, a stochastic 

process X = {xn, n = 1,2,3, … }  can be used to define the information entropy with the probability mass function 

f(⋅) given by  
 

H(X) = ∑ f(x) log f (x)

x

, 

, (1) 

and in a continuous time, stochastic process  X = {xt, 0 ≤ t ≤ ∞} extend the information entropy to 

 

H(X) = ∫ f(x) log f (x)dx
R

,       (2)  

 

where H(X) is the information entropy, f(x) is the probability distribution and  log is a natural logarithm or a logarithm 

to base 2 [1]. The information entropy what is commonly referred to as Shannon entropy by Schwill and Shannon (1948) 

[8], whom stated ”Entropy is the measure of uncertainty in random variables”. 

 

Many extensions of Shannon entropy have been introduced. Related to Shannon entropy is Relative entropy or 

Kullback-Leibler divergence, 
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H(X||Y) = ∫ g(x) log
𝑔(𝑥)

𝑓(𝑥)
dx

R
     (3) 

 

where f(x) and g(x) are probability density functions of probability measures X and Y respectively [9]. Other notable 

entropy is Renyi and Tsallis entropy which is specified as 

 

Hq(X) =
1

1−γ
log ∫ f(x)γ

R
dx       (4) 

 

where γ is the order of the entropy [10]. Many other entropy measures such as Sample, Mutual information, and transfer, 

also exist. 

 

Common properties of all these entropies are: 

• The Applicability in both discrete and continuous cases. 

• The range is from 0 to 1 unity. The measures are normalized to 0 in the case of independency, and the modulus 

of the measure is 1 in the case of measurable exact relationship between the random variables. 

• In the case of a bivariate normal distribution, the measure of dependence has a simple relationship with the 

correlation coefficient. 

• It measures not only the distance but also the divergence. 

 

Literature Review 
Entropy, a fundamental concept in information theory. It attempts to quantifies the inherent uncertainty associated with a 

probability distribution. It does this by capturing both the randomness within the distribution and the information content 

embedded in its higher-order moments [11],[1],[3]. While entropy has been used for uncertainty quantification, existing 

literature often relies solely on the normal probability density function (NPDF) as a penalty term [12]. This approach, 

while established, has limitations in capturing complex real-world uncertainties. Notably, it treats weights as discrete 

normal probabilities and employs entropy as a penalty to push them towards an equally weighted distribution [13], 

potentially overlooking valuable information embedded in other probability density functions [14]. Instead of the 

traditional penalty term approach using the normal distribution, there is a leverage of entropy directly as a quantifier of 

uncertainty in financial derivative markets. This aligns with information theory principles [15], capturing richer 

information content beyond the limitations of the normal distribution. Given its capacity to quantify inherent randomness 

and information content, Shannon entropy has garnered widespread recognition as a valuable measure in financial 

derivative management [16], uncertainty quantification [11], and utility theory [17]. 

 

Shannon Entropy: A Pillar of Uncertainty Quantification 

Shannon entropy, introduced by Claude Shannon in 1948 [8], has become a cornerstone of information theory and a widely 

used tool in diverse academic disciplines. It quantifies the uncertainty associated with a random variable, essentially 

measuring the average information needed to predict its outcome [18],[3]. Defined differently for continuous and discrete 

cases [19], Shannon entropy captures the inherent randomness of systems ranging from thermodynamics to financial 

markets [18]. However, it’s crucial to acknowledge Shannon entropy’s limitations. Its dependence on chosen parameters 

and lack of an invariant measure can lead to inconsistencies [20]. Notably, Kullback-Leibler divergence [21] highlights 

this shortcoming, demonstrating that Shannon entropy is not inherently symmetric in comparing two probability 

distributions [9]. Despite these limitations, Shannon entropy remains a valuable tool due to its simplicity and 

interpretability. Furthermore, several alternative measures address its shortcomings. Renyi entropy [9], a generalization 

with parameter ’γ’, offers additional flexibility. When ’γ’ approaches 1, it converges to Shannon entropy. Tsallis entropy 

[10], on the other hand, yields power-law distributions, making it suitable for situations where traditional exponential 

distributions fall short. Moreover, the Maasoumi-Racine [22] measure presents a valuable alternative, particularly for time 

series analysis [23]. Applicable to both discrete and continuous data, it ranges from 0 to 1 and excels at capturing non-

linear dependencies between random variables [24],[25], something Shannon entropy cannot directly address. 

Nevertheless, while Shannon entropy has limitations, its simplicity and interpretability make it a foundational tool in 

diverse academic fields [26]. The development of alternative measures like Renyi [9], Tsallis [10], and Maasoumi-Racine 

[22], enriches the toolbox for quantifying uncertainty, allowing researchers to choose the most appropriate measure for 

their specific needs and data characteristics [27]. These measures continue to push the boundaries of uncertainty 

quantification, leading to deeper insights across various academic disciplines. 

 

Kullback-Leibler Divergence: Unveiling Uncertainty through Informational Disparity 

While not explicitly measuring uncertainty, Kullback-Leibler [28] (KL) divergence offers a critical lens into quantifying 

this elusive concept within diverse academic disciplines. Its ability to assess the informational disparity between a 

presumed distribution (X) and the true underlying one (Y) unlocks valuable insights into uncertainty [9]. KL divergence 

as an Informational Gap [29]: at its core, KL divergence, denoted by KL (X||Y), quantifies the additional information (in 

bits) required to encode samples from the true distribution X using the code designed for our assumed distribution Y. This” 

extra information” acts as a proxy for the degree of uncertainty associated with relying on Y to represent X [30]. 
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Unveiling Uncertainty through Model Evaluation: 

 

Machine Learning: In model training, minimizing KL divergence between predicted and true data distributions becomes 

a key objective. This ensures the model captures the underlying data accurately, effectively reducing prediction uncertainty 

[31]. 

 

Hypothesis Testing: Comparing statistical models involves minimizing KL divergence between their predicted and 

observed distributions. This identifies the model that best represents the observed data, aiding in uncertainty reduction 

within the chosen model framework [32]. 

Beyond Traditional Metrics: 

Unlike typical error metrics focused on point estimates, KL divergence tackles the entire distribution [33]. It captures not 

only the average prediction error but also the spread and shape of the error distribution, providing a richer understanding 

of uncertainty [34],[31]. 

 

Academic Nuances and Considerations: 

Non-negativity: KL divergence is always non-negative, indicating how much” worse” Y is than X, not how” good” X is 

on its own. This necessitates complementary metrics for absolute uncertainty assessment [35],[36]. 

Computational Cost: Calculating KL divergence can be computationally expensive for complex distributions, demanding 

trade-offs between accuracy and efficiency [37]. 

Interpretability: While conceptually powerful, interpreting KL divergence in specific contexts requires domain 

knowledge and additional analysis to extract meaningful insights [38]. 

In conclusion, KL divergence, despite not directly measuring uncertainty, offers a unique perspective by quantifying the 

informational disparity induced by our assumption. By minimizing this disparity, we effectively reduce uncertainty, 

making KL divergence a valuable tool for model evaluation, hypothesis testing, and various uncertainty informed decision-

making processes across diverse academic domains [39],[40]. 

 

Renyi and Tsallis Entropy: Bridging the Gaps in Uncertainty Quantification 

While Shannon entropy serves as a foundational tool for quantifying uncertainty, its limitations [20], particularly its 

dependence on chosen parameters and lack of an invariant measure, necessitate exploring alternative measures. Renyi and 

Tsallis entropy [41],[9],[10] provide valuable solutions, offering greater flexibility and adaptability in diverse academic 

disciplines. 

Renyi Entropy: Unveiling Hidden Aspects of Uncertainty: 

Proposed by Alfred Renyi [42], Renyi entropy (Hq(X)) presents a generalization of Shannon entropy by introducing the 

parameter ’q’. This parameter grants flexibility, enabling the capture of different facets of uncertainty depending on its 

value [1]. As ’q’ approaches 1, Renyi entropy converges to Shannon entropy, maintaining compatibility with existing 

applications [43]. 

 

Beyond Traditional Applications: 

Renyi entropy transcends Shannon’s limitations, finding applications in diverse fields like information theory, statistical 

mechanics, and complex systems analysis [44]. Its strength lies in capturing power-law distributions and heavy-tailed 

behaviour, effectively handling non-uniform information content where Shannon entropy struggles [45]. The tenable 

parameter ’q’ empowers researchers to focus on specific aspects of uncertainty, tailoring the measure to their data and 

research questions. 

 

Tsallis Entropy: Embracing Correlations and Complexity: 

Introduced by Constantino Tsallis in 1988 [46], Tsallis entropy (Hq(X)) incorporates an additional parameter ’q’ to account 

for potential correlations between system elements. This makes it particularly suitable for systems with long-range 

correlations or non-extensive interactions, where conventional entropy measures fall short [47]. Tsallis entropy generates 

power-law distributions, offering valuable insights into complex systems exhibiting self-similar or fractal behaviour [48]. 

 

Academic Nuances and Rigor: 

Both Renyi and Tsallis entropy necessitate careful parameter selection. Inappropriate choices can lead to 

misinterpretations and inconsistencies in uncertainty quantification [49]. A thorough understanding of their theoretical 

underpinnings and limitations is crucial before application in specific academic contexts. Comparative analysis with 

Shannon entropy is essential, along with clear justifications for chosen parameters, to enrich research methodologies and 

deepen the understanding of uncertainty within specific disciplines [50]. 

Renyi and Tsallis entropy represent crucial advancements in quantifying uncertainty, offering researchers wider 

applicability and adaptability beyond the conventional limitations of Shannon entropy [51]. By delving into their 

theoretical foundations, understanding their applications, and acknowledging their limitations, researchers can leverage 

these powerful tools to gain deeper insights into complex systems and phenomena characterized by non-uniform 

information content, intricate correlations, and multifaceted interactions [48],[50]. 
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Maasoumi-Racine Entropy: A Rigorous Exploration Beyond Shannon Entropy 

Within the realm of information theory, Shannon entropy reigns supreme as the foundational measure of uncertainty 

associated with random variables [52]. However, its scope is limited to individual variables, neglecting the crucial realm 

of dependence between them [20]. To address this shortcoming, Maasoumi-Racine (MR) entropy [25] emerges as a more 

versatile and academically rigorous extension, offering a deeper understanding of information content in complex systems. 

 

Fundamental Principles: 

Joint Uncertainty: Unlike Shannon’s focus on individual probabilities, MR entropy explicitly incorporates pairwise and 

higher-order dependencies, enabling the analysis of intricate interactions within datasets. This makes it immensely 

valuable for tackling problems where variables exhibit non-trivial relationships 

[53]. 

Generalized Dependence Structures: MR entropy transcends limitations of traditional measures by accommodating a 

wider spectrum of dependence structures [54]. It seamlessly handles linear, nonlinear, and even nonparametric 

dependencies [55], providing a more general framework for diverse data and applications. 

 

Enhanced Information Capture: By delving into the realm of dependence, MR entropy offers richer information 

compared to Shannon entropy [22]. It unveils crucial insights into how variables intertwine, empowering researchers with 

a deeper understanding of system dynamics and facilitating improved modeling and prediction capabilities [56]. 

 

Academic Insights and Rigor: 

Renowned scholars commend MR entropy for its flexibility [52], generality, and information richness, highlighting its 

advantages in various academic disciplines [56]. Theoretical, MR entropy is firmly grounded in information theory 

principles, drawing upon well-established axioms and mathematical frameworks [22]. This ensures theoretical soundness 

and rigor. Extensive research showcases the practical utility of MR entropy in diverse academic fields, including finance, 

econometrics, machine learning, signal processing, image analysis, bioinformatics, and social network analysis [56],[22]. 

While offering enhanced information, MR entropy can involve higher computational costs compared to Shannon entropy. 

However, ongoing research explores efficient algorithms and approximations to mitigate this challenge [57]. 

Mathematically sound, MR entropy measures can sometimes lack intuitive interpretations [22]. Recent efforts focus on 

developing more interpretable formulations that bridge the gap between theory and practical application. 

Moreover, MR entropy stands as a powerful extension to Shannon entropy, offering a rigorous and flexible framework for 

information analysis in complex systems [52]. Its ability to capture dependence structures and provide richer information 

content makes it a valuable tool for academics across various disciplines [52]. By addressing computational and 

interpretability considerations, MR entropy is poised to play an increasingly critical role in advancing our understanding 

of information and dependence in diverse academic pursuits [22]. 

 

Methodology 

 

Stochastic Probability Density Function Theory 

Introduction 

Stochastic (Non-deterministic) probability density function theory (SPDF) encompasses a rich and diverse set of methods 

used to describe and analyse systems governed by random processes. Understanding these systems often requires going 

beyond traditional deterministic approaches and embracing the inherent randomness present. SPDF theory provides a 

powerful framework for doing just that. 

 

• Stochastic Processes: Systems often evolve in a random way over time. SPDF theory models such systems using 

stochastic processes, which describe the evolution of the system’s probability distribution over time. These 

processes can be discrete (e.g., coin flips) or continuous (e.g., Brownian motion). 

 

• Probability Densities: SPDF relies heavily on the concept of probability density functions (PDFs). A PDF assigns 

probabilities to different possible values of a random variable, allowing us to quantify the likelihood of each 

outcome. 

• Equation-Based Analysis: Instead of deterministic equations, SPDF theory utilizes equations that involve 

probabilities and random fluctuations. These equations, such as the Fokker-Planck equation, describe how the 

probability distribution of the system evolves over time. 

 

Stochastic Process 

Stochastic processes describe dynamical systems whose time-evolution is of probabilistic nature. 

 

Definition 1. Let T  be an ordered set, (Ω, ℱ, P)  a probability space and (ℰ, 𝒢)  a measurable space. A stochastic 

process is a collection of random variables X = {Xt; t ∈ T} where, for each fixed t ∈ T , Xt is a random variable from 

(Ω, ℱ, 𝑃)  to ((ℰ, 𝒢). Ω is known as the sample space, where ℰ is the state space of the stochastic process Xt 
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[58]. 

  

The set  𝑇 can be either discrete, for example the set of positive integers Z+, or continuous T = R+. The state space ℰ 

will usually be Rd equipped with the σ-algebra of Borel sets. A stochastic process X may be viewed as a function of both 

t ∈ T and ω ∈ Ω. The notations are sometimes used, X(t), X(t, ω) or Xt(ω) instead of  Xt. For a fixed sample point 

𝜔 ∈ Ω, the function Xt(ω): T ⟼ ℰ is called the path of the process 𝑋. 

One of the most important continuous-time stochastic process is Brownian motion. Brownian motion is a process with 

almost surely continuous paths and independent Gaussian increments. A process 𝑋𝑡 has independent increments if for 

every sequence t0 < t1 < ⋯ < tn the random variables 

 

Xt1
− Xt0

, Xt2
− Xt1

, … , Xtn
− Xtn−1

 

 

are independent. If, furthermore, for t1, t2, s ∈ T and Borel set ℬ ⊂ R. 

 

P(Xt2+s − Xt1+s ∈ ℬ) = P(Xt2
− Xt1

∈ ℬ) 

 

[59], then the process 𝑋𝑡 has stationary independent increments. 

 

Definition 2. A one-dimensional standard Brownian motion W(t): R+ ⟼ R is a real valued stochastic process with 

almost surely continuous paths such that W(0) = 0, it has independent increments and for every t >  s ≥ 0, the 

increment W(t) − W(s) has a Gaussian distribution with mean 0 and variance t − s, i.e. the density of the random 

variable 𝑊(𝑡) − 𝑊(𝑠) is 

 

 

g(x; t, s) = (π(t − s))
−

1

2 exp (−
x2

2(t−s)
)  [53] 

 

 
 

 
 

Figure 1: A path of a “sticky” Brownian motion (blue) constructed from the path of a reflecting Brownian motion 

(grey). The local time at 0 of the “sticky” paths is in red [60] 

. 

 

A standard d-dimensional standard Brownian motion W(t): R+ ⟼ Rdis a vector of 𝑑 independent one-dimensional 

Brownian motions: 

 

W(t) = (W1(t), … . , Wd(t)), 
 

where Wi(t), i = 1, … , d are independent one-dimensional Brownian motions. The density of the Gaussian random 

vector 𝑊(𝑡) − 𝑊(𝑠)  is thus 
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g(x; t, s) = (π(t − s))
−

d
2 exp (−

||x||
2

2(t − s)
) 

 

 

Acknowledging that Brownian motion with almost surely continuous paths, also has a continuous modification. Consider 

two stochastic processes 𝑋𝑡, and Yt, t ∈ T, that are defined on the same probability space  (Ω, ℱ, P). The process 𝑌𝑡, is 
said to be a modification of 𝑋𝑡,  if P(Xt = Yt) = 1 for all t ∈ T. The fact that there is a continuous modification of 

Brownian motion follows from the following result known as Kolmogorov theorem, see Figure 2. 

 

Theorem 1. Let 𝑋𝑡    ,t ∈ [0, ∞)  be a stochastic process on a probability space (Ω, ℱ, 𝑃) . Suppose that there are 

positive constants α and β, and for each T ≥  0 there is a constant C(T) such that 

  

E|𝑋𝑡 − 𝑋𝑠|𝛼 ≤ C(T)|t − s|1+β, 0 ≤ s, t ≤ T.   (5) 

 

Then there exists a continuous modification and 𝑌𝑡 of the process of  𝑋𝑡,   
 

Brownian motion is also referred to as the Wiener process. It is possible to prove the existence of the Wiener process 

(Brownian motion) as shown in the theorem below: 

 

Theorem 2. There exists an almost surely continuous process Wt with independent increments such and 𝑊𝑡 = 0, such 

that for each t ≥ 0 the random variable 𝑊𝑡   is 𝒩(0, t). Furthermore, 𝑊𝑡   is almost surely locally H�̈�lder continuous 

with exponent 𝛼 for any  α ∈ (0,
1

2
). 

 

Proof: let 𝑋1, 𝑋2 , ... be iid random variables on a probability space (Ω, ℱ, 𝑃). with mean 0 and variance 1. Define the 

discrete time stochastic process 𝑆𝑛   with 𝑆0 = 0  , Sn = ∑ X𝑗j=1 , n ≥  1 . Define now a continuous time stochastic 

process with continuous paths as the linearly interpolated, appropriately rescaled random walk: 

 

Wt
n =

1

√n
S[nt] + (nt + [nt])

1

√n
X[nt]+1     (6) 

 

where [⋅] denotes the integer part of a number. Then Wt
n converges weakly, as n ⟼ +∞ to a one-dimensional standard 

Brownian motion, see Figure 2. 

 

 

 
 

Figure 2: Sample paths of the random walk of length n = 50 and n = 1000. 
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Furthermore, the definition of the one-dimensional standard Brownian motion is that of a Gaussian stochastic process on 

a probability space (Ω, ℱ, 𝑃) with continuous paths for almost all ω ∈ Ω, and finite dimensional distributions with zero 

mean and covariance E (Wti
, Wtj

) = min(ti, tj). 

For the d-dimensional Brownian motion we have [60], 

 

 E(Wt) = 0, ∀t ≥ 0                           (7) 

 

and 

 

E((Wt − Ws) ⊗ (Wt − Ws)) = (t − s)I, (8) 

 

Where I represent the identity matrix. And hence 

 

E(Wt ⊗ Ws) = min(t, s)I           (9) 

 

 

The probability density of the one-dimensional Brownian motion is 

 

f(x, t) =
1

√2πt
e−x2/2t          (10)  

 

 

We can easily calculate all moments: 

 

E(Wt
n) =

1

√2πt
∫ dt

+∞e−x2/2t

−∞
      (11) 

 

=  {
1.3 … (n − 1)t^{n/2},  n "{even}

0,  𝑛 "{𝑜𝑑𝑑}
,  [59] 

 

 

One can see that the mean square displacement of Brownian motion grows linearly in time and Brownian motion is 

invariant under various transformations in time. 

 

 

Proposition 1. Let Wt denote a standard Brownian motion in R. Then, 𝑊𝑡  has the following properties: 

(1) (Rescaling). For each k >  0 define Xt =
1

√k
Wct. Then (X_t$, $t ≥ 0)  =  (W_t$, $t ≥ 0) in law. 

(2) (Shifting). For each c > 0, Wc+t − Wc, t ≥ 0  is a Brownian motion which is independent of Wa, a ∈ [0, a]. 
(3) (Time reversal). Define  Xt = W1−t − W1, t ∈ [0,1]. Then (Xt, t ∈ [0,1]) = (Wt, t ∈ [0,1]) in law. 

(4) (Inversion). Let Xt, t ≥ 0  defined by X0 = 0, Xt = tW(1/t). Then  (Xt, t ≥ 0) = (Wt, t ≥ 0) in law. 

 

Proof 

 

(1) Consider 𝑡 be a specific time point, where it can be rewrite as 𝑡 = 𝑐𝑠 for some 𝑠 ≥ 0. Using change of variable 

formula, we have 

Xt =
1

√k
Wct =

1

√k
Wcs(1) =

1

√k
√cWs. 

√  

      Since 𝑊𝑠  is normal distributed with mean 0 and variance 𝑠, then 𝑊𝑠/√𝑐  is also normal distributed with mean 0 and                          

variance s/c. If we multiply through with  
1

√𝐾
 , we get 𝑠/𝑘𝑠 = 𝑡/𝑘. So 𝑋𝑡 =

1

√𝑘
𝑊𝑐𝑡 is normal distributed with 

mean 0 and variance t/k. Since  Xt matches the distribution of  Wt for any 𝑡 ≥ 0, then we conclude that (𝑋𝑡 =
 𝑊𝑡  . for any 𝑡 ≥ 0) in law. 

 

(2) Let S = inf{t ≥ 0 ∶  Wt = c}.   S is stopping time, and 𝑊𝑐  =  𝑊𝑆. Therefore, the sigma-algebra generator 

by {Wa: 0 ≤ a ≤ S} = {Wa: 0 ≤ a ≤ S}  is independent of the sigma-algebra generated by {Wc+t: t ≥
0} = {{Ws: S ≤ s ≤ S + t}. Since  Wc+t − Wc = (Wc+t − WS) + (WS − Wc), we can see that: 

• Wc+t − WS is independent of {Wa: 0 ≤ a ≤ S} due to the strong Markov Property. 

•  𝑊𝑆 − 𝑊𝑆   is independent of {𝑊𝑎: 0 ≤ 𝑎 ≤ 𝑆} because 𝑊𝑐  is a function of {𝑊𝑎: 0 ≤ 𝑎 ≤ 𝑆}. 
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•  

 

Therefore 𝑊𝑐+𝑡 − 𝑊𝑆  is a sum of independent random variables and hence independent of {𝑊𝑎: 0 ≤ 𝑎 ≤ 𝑆}.  By 

stationary of increments, it is also independent of any 𝑊𝑎 for  a ∈ [0, c].  Since Wc+t − Wc has same distribution as   

Wt − W0, for any c ≥ 0 and, also independent of any Wa for  a ∈ [0, c], then Wc+t − Wc is a Brownian motion 

independent of  𝑊𝑎  for 𝑎 ∈ [0, 𝑐]. 

 

(3) (Time reversal). Having Xt = W1−t − W1, apply the reflection principal with a = 1 and t = 1 − t to get: 

 

Xt = W(1−t)−1 − W1 = Wt/2 − W1 

This means Xt is the reflection of a Brownian motion at 0 across the line t =
1

2
.  To show that the distribution of 𝑋𝑡 

matches the distribution of 𝑊𝑡  for t ∈ [0,1]  we take note of the following: 

• Both  𝑊𝑡   and the reflection of a Brownian motion start at 0 (since 𝑊0 = 0  ).  

• Both have same variance for any given t. 

• The reflection simply changes the direction of the movement but preserves the magnitude. 

 

Since the distribution 𝑋𝑡  matches the distribution of  𝑊𝑡    for any 𝑡 ∈ [0,1] , we conclude that 𝑋𝑡  = 𝑊𝑡    for any 

𝑡 ∈ [0,1] in law. 

 

(4) Define a transformation  s =
1

t
.  Then t =

1

s
 and  dXt =

ds

s2 . Using transformation in the It�̂�  formula on 𝑋𝑡, 

 

dXt = tdW1/t +
1

2
t2d(W1/t)

t
 

substituting ds  and simplifying 

 

dXt = −dWs +
1

2s
t2ds 

 

The standard Brownian motion 𝑊𝑡  satisfies the stochastic differential equation (SDE) 

 

dWt = dBt 

 

where 𝐵𝑡  is a standard Brownian motion with variance t. Comparing the two (SDE): 

• both have the same drift term (0). 

• the diffusion term for 𝑋𝑡 volves 
1

s
 instead of s  compared to 𝑊𝑡  . 

 

Although the diffusion terms differ, they are related by a simple transformation: 

• for  t > 1,
1

s
< s 

• for 0 < t < 1,
1

s
< s 

 

Therefore, the diffusion term of  𝑋𝑡 scales the diffusion term of 𝑊𝑡 in a predictable way depending on the time range. 

This scaling does not affect the distribution of the process if the scaling factor is non-random and deterministic. Since 

both 𝑋𝑡 and 𝑊𝑡 satisfy SDEs with the same drift term and equivalent diffusion terms they have the same distribution. 

Therefore, (𝑋𝑡 = 𝑊𝑡 for any t ≥ 0) in law. 

 

One can also add a drift and change the diffusion coefficient of the Brownian motion: Let’s define a Brownian motion 

with drift μ and variance σ2 as the process 

 

Xt = μt + σWt. (12) 

 

The mean and variance of 𝑋𝑡 are 

 

E(Xt) = μt, E(Xt) − E(Xt)2 = σ2t. (13) 
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Equation (12) above satisfies the equation 

 

dXt = μdt + σdWt. (14) 

Which is a stochastic differential equation. Now in the probability density equation (10), we insert the drift 𝜇 and the 

variance 𝜎2  as controller of a stochastic behaviours. Hence the stochastic probability density function or a Gaussian 

Random Field distribution can be express as in [61] 

 

f(x, t) =
1

√2πσ2
exp (−

[log 𝑥𝑡−𝜇]2

2𝜎2 ).         (15) 

 
 

.  

Quantifying uncertainty 

 

Here we lay the groundwork for a robust discussion on quantifying uncertainty within diverse mathematical frameworks. 

Let’s delve deeper into the mathematical aspects: 

 

• Let U denote the set of all uncertainty measures offered by various theories (e.g., probability theory, possibility 

theory, Dempster-Shafer theory [62]). 

• Each theory operates on a space of evidence representations, denoted by 𝐶. This space typically comprises subsets 

of the universal set of possibilities 𝑋. 

• The crucial aspect is to assign a function u as a representation in the theory 𝜇, defined as follows: 

 

u: U(μ) ⟼ R+, 
where 

(16) 

μ: C ⟼ R (17) 

  

associating a non-negative real value (uncertainty magnitude) with every uncertainty measure  μ ∈ U [63]. This function 

translates theoretical uncertainty representations into quantifiable values. 

 

The mapping function u must adhere to specific axioms ensuring consistency and meaningful interpretation of assigned 

uncertainty values. Some essential axioms could include: 

 

1. u(μ) ≥ 0 for all 𝜇 ∈ 𝑈. 

2. u(μ0) = 0 for a specific reference measure µ0 representing perfect certainty (e.g., measure concentrated on a single 

outcome). 

3. Higher uncertainty (less evidence) should have a higher numerical value: μ1 ≤ μ2 → u(μ1) ≥ u(𝜇2) 

4. Compatibility with fundamental operations on measures (e.g., union, intersection) might be desirable depending on 

the application. 

 

The fundamental measure of uncertainty based on Hartley’s measure quantifies [64] H(μ) = − log2(|A|), where A 

represents the set of possibilities consistent with the evidence μ. The higher cardinality (|A|) implies more ambiguity 

and results in a higher uncertainty value. This measure solely considers the number of possibilities, ignoring potential 

information within 𝜇 about their relative likelihoods. In the context of possibility theory, the finite set X of conceived 

alternatives includes only one alternative in each situation that is true. This uncertainty measure can be interpreted as a 

measure of diagnostic uncertainty. The level of uncertainty increases as the number of alternatives increases [63]. We now 

investigate the Shannon entropy. 

 

 

The Shannon Entropy with stochastic probability 

 

The standard Shannon entropy H(x) defined in equation (2) uses a uniform probability distribution, assuming all possible 

outcomes are equally likely. This works well for simple scenarios with no inherent bias, but it might not reflect the true 

uncertainty in many real-world situations. This study considers that stochastic or non-deterministic probability 

distributions, can incorporate specific information about the variability and skewness present in the data. 

 

Let 𝑀(𝑥) be the newly modified Shannon entropy measure, with all the attributes of uncertainty quantifier defined by 

equation (16), so 
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M(X) = − ∫ f(x, t) log2 f (x, t)dx
R

 

 

in case where X is a continuous random variable, or 

 

(18) 

M(X) = − ∑ f(x, t) log2 f (x, t)n
i=1                (19) 

 

when X is a discrete random variable and f(x, t) is the stochastic probability density function given in equation (15). 

 

𝑀(𝑥) leads to: 

 

• More accurate entropy values: Reflecting the actual uncertainty characteristics of your system. 

• Deeper insights: Revealing how uncertainty changes over time, depends on external factors, or exhibits specific 

patterns. 

• Tailored analysis: Matching the distribution to your specific problem domain and research questions. 

 

 

Theorem 3. For any valid PDF f(x, t) ≥ 0,   H(f) = ∫ f(x, t) log2 f (x, t)dx
R

≥ 0 

 

Proof 

By PDF definition, 𝑓(𝑥, 𝑡) > 0   for all 𝑥 ≥ 0 . Which results to 𝑓(𝑥, 𝑡) ⋅ [− log _2(𝑓(𝑥, 𝑡)]  > 0 . 

Subsequently, it follows that 𝐻(𝑓) > 0 . The product 𝑓(𝑥, 𝑡) log2 𝑓(𝑥, 𝑡) = 0  if and only if 𝑓(𝑥, 𝑡) = 1 . 

Therefore H(f) = ∫ f(x, t) log2 f (x, t)dx
R

= 0 if f(x, t) =  1 everywhere. Putting all together, we have 

H(f) ≥ 0 . 
 

 

Theorem 4. (Sub-additivity Property) 

Let f(x, t) be a proper PDF i.e.,∫ f(x, t)dt
R

= 1 suppose H(f) ≤ 0 is finite and f(x, t) + g(x, t) = 1 

where f and g are proper PDF. Then H(f + g) ≤ H(f) + H(g). 
 

Proof 

We can utilize Jensen’s inequality, which states that, for a convex function u(x) with the probability distribution  𝑝(𝑥, 𝑡), 

we have ∫ 𝑢(𝐸[𝑥])𝑝(𝑥, 𝑡)𝑑𝑥
𝑅

≤ 𝐸[𝑢(𝑥)] . Consider the convex function u(x) = x log2 x  for all x ≥ 0  and 

p(x, t) = f(x, t) + g(x, t). Then, 

 

∫ (f(x, t) + g(x, t) log2(f(x, t) + g(x, t)))dx
R

≤ (f(x, t) + g(x, t)) + g(x, t)E(1)dx 

 

note that, E[1] = ∫ f(x, t)
R

+ g(x, t)dx = 1 due to the given condition. Rearranging and using the definition H(f) 

and   H(g), then H(f + g) ≤ f(x, t) + g(x, t) = H(f) + H(g). Therefore, H(f + g) ≤ H(f) + H(g) holds. 

 

 

Theorem 5. (Maximum Entropy Principle) 

Let E[h(X)]  be the expected value of a function h(X)  with respect to the random variable X  and let C  be a set of 

constraints on these expected values. Then, the PDF f(x, t) that maximizes H(f) subject to constraints in C is the solution 

to: 

𝐴𝑟𝑔𝑀𝑎𝑥𝑓 {  H(f)  | E[h(X)]  ∈ C}(20) 

 

Theorem 6. (Data Processing Inequality) 

Let Y = g(X) be a deterministic function of 𝑋 with PDF 𝑓(𝑥, 𝑡) . Then: 

 

H(Y) ≤ H(X) (21) 

 

Theorem 7. (Chain Rule) 

If 𝑋 and 𝑌 are independent random variables with PDFs 𝑓(𝑥, 𝑡) and 𝑔(𝑦, 𝑡): 

 

H(X, Y) = H(X) + H(Y) (22) 
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Proof 

Let 𝑋 and 𝑌 be two random variables with joint PDF 𝑓(𝑥, 𝑡) defined as 

 

H(X, Y) = − ∫ ∫ f(x, y) log2 𝑓(𝑥, 𝑦)𝑑
RR

xdy. 

 

Since 𝑋  and 𝑌  are independent, their PDF can be express as f(x, y) = f(x, y) ⋅ g(y, t)   where 𝑓(𝑥, 𝑡)  and 

𝑔(𝑦, 𝑡)are marginal PDF of 𝑋 and 𝑌 respectively. Using product rule into joint entropy, we have 

 

H(X, Y) = − ∫ ∫ (f(x, t) ⋅ g(y, t)) log2(f(x, t) ⋅ g(y, t)) dxdy
RR

 (23) 

 

Separating equation (23) using the logarithmic properties, we get 

 

H(X, Y) = − ∫ ∫ [f(x, t) ⋅ log2 f (x, t)]
RR

+ f(x, t) ⋅ log2[g(y, t) + g(y, t) ⋅ log2 f (x, t)] dxdy 

 

Therefore, grouping the terms based on the functions 𝑓(𝑥, 𝑡) and 𝑔(𝑦, 𝑡) 

 

H(X, Y) = − (∫ f(x, t) log2 𝑓(𝑥, 𝑡)
R

dx) + (− ∫ g(y, t) log2 𝑔(𝑦, 𝑡)
R

dy) = H(X) + H(Y) 

 

Hence proven. 

 

Results and Discussion 

 

Introduction 

This section details the application of the proposed entropy measure to analyse data from various financial instruments, 

including stocks, futures contracts, and exchange rates. Data was retrieved from a publicly available financial database 

[65] and subsequently analysed using Python as the primary programming language. Specific details regarding the chosen 

instruments are provided in Table 1. The data encompasses a nine-year timeframe, spanning from December 2014 to 

December 2023. Adjusted closing prices were utilized, with an average of up to 2265 observations per instrument. This 

selection was based on data availability within the chosen database. To ensure consistency in the analysis, all instruments 

were examined over the identical time-period, specifically, the first month, first year, third year, fifth year, seventh year, 

and ninth year. Notably, the proposed quantifier is applicable to both discrete and continuous data series. Furthermore, the 

study compared the traditional Shannon entropy, which utilizes a normal probability distribution, with a modified version 

employing a stochastic probability distribution. 

 

Periods  One 

Month 

One Year Three 

Years 

Five 

years 

Seven 

Years 

Nine Years 

Counts  21 252 756 1258 1763 2265 

Mean (µ) 

Bitcoins 251.8562 271.9979 1606.9022 3951.6407 11189.1130 15041.2365 

Facebook 76.7020 88.5732 120.5631 142.8207 181.3183 190.0512 

SP500 2029.6414 2061.1271 2201.0824 2451.7115 2821.1732 3125.0128 

Rusell2000 1181.6657 1205.8931 1266.6228 1386.9670 1528.6443 1602.5650 

Tesla 13.6112 15.3316 16.7503 17.9175 63.6369 102.8474 

Amazon 15.1555 23.8344 35.7203 55.6913 82.8309 91.9168 

Standard 

Deviation 

(σ2) 

Bitcoins 38.4433 59.0922 2875.2343 3970.3189 15898.3456 16257.2142 

Facebook 1.1113 10.1734 30.5622 38.0501 75.1616 76.3271 

SP500 22.4612 54.8753 197.9467 356.9490 732.7045 871.4692 

Rusell2000 13.5689 47.9205 133.3196 187.2190 345.9905 339.7825 

Tesla 0.5592 1.5845 3.6168 3.7331 89.3987 110.9273 

Amazon 0.7128 5.5269 11.2922 26.6005 50.3666 48.6703 

Table 1: Financial derivatives and their descriptions per period 
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Testing for novel Shannon entropy 

Prior to analysis, all data pertaining to the financial instruments outlined in Table 1 underwent a rigorous cleaning process. 

This process ensured the removal of any inconsistencies or errors within the data. Subsequently, histograms and normal 

probability density functions (PDFs) were generated to visualize the distribution of the cleaned data. These visualizations 

are presented in Figures 5 and 6, respectively. Figure 6 depicts the histograms of the organized data. By visually inspecting 

these histograms, a tendency towards normality can be observed in the data distribution. Conversely, Figure 6 employs 

kernel density estimation (KDE) to capture the inherent randomness within the data. This technique provides a smoother 

representation of the underlying distribution compared to histograms. 

 

 

 

 
Figure 5: Histograms and normal PFD of financial derivatives 
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Figure 6: PDF of the Random Distribution using KDE function 

 

Results 

This section details the evaluation of information entropy for the adjusted closing prices of the aforementioned financial 

instruments. The proposed entropy measure, as presented in Equation ([19]), was employed for this analysis. Additionally, 

traditional Shannon entropy, based on Equation ([1]), was calculated for comparative purposes. The results of this 

evaluation are summarized in Table 2. 

 

Periods  One 

Month 

One Year Three Years Five Years Seven Years Nine Years 

Shannon 

Entropy 

Bitcoins 4.3923 7.9773 9.5596 10.2937 10.7815 11.1435 

Facebook 4.2018 7.8820 9.4723 10.1838 10.6940 11.0459 

SP500 4.3923 7.9535 9.5411 10.2794 10.7713 11.1347 

Russell200 4.3923 7.9455 9.5384 10.2747 10.7634 11.1250 

Tesla 4.3923 7.9187 9.5030 10.2343 10.7380 11.1052 

Amazon 4.3923 7.9614 9.5490 10.2762 10.7657 11.1114 

Proposed 

Entropy 

Bitcoins 4.16E-07 0.005698 1.549536 0.858404 0.306457 0.254947 

Facebook 0 1.9E-12 0.16549 0.23663 3.918133 3.284718 

SP500 0 0 0 2.46E-09 0.007357 0.015511 

Russell200 0 0 0 1.14E-10 0.001731 0.000492 

Tesla 0 1.7E-10 0.916559 0.479705 28.94218 21.00299 

Amazon 0 0.91687 6.492424 19.81093 20.46706 15.04915 

Table 2: Entropies outcome results 

Discussions 

The entropy risk measure results presented in Table 2 suggest a potential advantage over traditional Shannon entropy for 

certain assets. While traditional entropy might indicate relatively high risk across all considered instruments (Equation 

[1]), the proposed entropy measure offers a potentially different perspective (Equation [19]). 

 

Table 3 provides further insights. It suggests that all assets might offer a relatively safe environment for short-term 

investments, with Bitcoin appearing slightly riskier than the remaining derivatives. Conversely, SP500 and Russell2000 

emerge as the most favourable options within this timeframe. For long-term investments, however, the study indicates that 

Tesla, Amazon, and Facebook might be less suitable based on the proposed entropy measure 
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Periods One Month One Year Three Years Five Years Seven Years Nine Years 

Shannon 

Entropy 

Bitcoins Bitcoins Bitcoins Bitcoins Bitcoins Bitcoins 

Amazon Amazon Amazon Amazon SP500 SP500 

SP500 SP500 SP500 SP500 Amazon Amazon 

Russell2000 Russell200 Russell200 Russell200 Russell200 Russell200 

Tesla Tesla Tesla Tesla Tesla Tesla 

Facebook Facebook Facebook Facebook Facebook Facebook 

Proposed 

Entropy 

Bitcoins Amazon Bitcoins Amazon Tesla Tesla 

Amazon Bitcoins Amazon Bitcoins Amazon Amazon 

Tesla Tesla Facebook Tesla Facebook Facebook 

Facebook Facebook Tesla Facebook Bitcoins Bitcoins 

Russell200 Russell200 Russell200 SP500 SP500 SP500 

SP500 SP500 SP500 Russell200 Russell200 Russell200 

Table 3: Ranking according to entropy information 

 

Conclusion 

This article proposed a novel modified Shannon entropy that incorporates the stochastic behaviour of market derivatives 

to quantify their associated uncertainty and risk. It demonstrates that traditional Shannon entropy theory can be enhanced 

by considering the inherent randomness of data, particularly for highly volatile assets, as evidenced by the results. This 

work contributes to the field of risk analysis by employing Shannon entropy to quantify the disparity arising from 

stochasticity within the distribution. 

 

The article also identified several key areas for future research. Further investigation is needed to address potential 

inconsistencies identified in the formulation. Despite these limitations, the results are promising for various applications. 

Future work should explore the applicability of incorporating the stochastic nature of data into other entropy families, 

such as Kullback-Liebler divergence, mutual information, R´enyi entropy, Tsallis entropy, and others. This novel approach 

has the potential to significantly benefit future research by highlighting the importance of accounting for randomness in 

data. It paves the way for addressing the fundamental question of” what is the optimal distribution of data?” Ultimately, 

the proposed novel Shannon entropy perspective offers an alternative way to quantify uncertainty in financial derivatives. 
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