Synthesis & characterization of copper nanoparticles using LASIS and chemical reduction technique

  • Keyur Bhatt
  • Ajay Desai Ganpat University
  • Vishal Pillai
  • Kavit Mehta Ganpat University
Keywords: Nanoparticles, Copper Nanoparticles, LASIS, Chemical reduction method, Mie Theory

Abstract

Nanotechnology refers to the creation and utilization of material whose constituents exist at the nano scale and by convention is up to 100nm in size. Nanotechnology explores electrical, magnetic and optical activity as well as structural behavior at the molecular and sub molecular level. The control over in particle size and in turn size dependent properties of copper nanoparticles is expected to provide additional applications. Various methods for synthesis of copper nanoparticles have been reported including chemical methods, physical methods, biological methods, and green synthesis. A detailed discussion on the synthesis of copper nanoparticles using LASIS and chemical reduction technique are mentioned and the characterization of synthesized copper nanoparticles is done by UV- Visible spectroscopy using Mie Theory for theoretical particle size estimation.

Downloads

Download data is not yet available.

Author Biographies

Keyur Bhatt

Department of Chemistry, Mehsana Urban Institute of Sciences, Ganpat University, Kherva

Ajay Desai, Ganpat University

Department of Chemistry, Mehsana Urban Institute of Sciences, Ganpat University, Kherva-384012

Vishal Pillai

Department of Physics, Mehsana Urban Institute of Sciences, Ganpat University, Kherva-384012

Kavit Mehta, Ganpat University

Department of Biotechnology, Mehsana Urban Institute of Sciences, Ganpat University, Kherva

References

H. Bar, D.K. Bhui, G.P. Sahoo, P. Sarkar, S.P. De, A. Misra, Green synthesis of silver nanoparticles using latex of Jatropha curcas, Colloids and surfaces A: Physicochemical and engineering aspects, 339 (2009) 134-139.

M.-C. Daniel, D. Astruc, Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology, Chemical reviews, 104 (2004) 293-346.

T. Kawai, D.J. Neivandt, P.B. Davies, Sum frequency generation on surfactant-coated gold nanoparticles, Journal of the American Chemical Society, 122 (2000) 12031-12032.

R. Lévy, N.T. Thanh, R.C. Doty, I. Hussain, R.J. Nichols, D.J. Schiffrin, M. Brust, D.G. Fernig, Rational and combinatorial design of peptide capping ligands for gold nanoparticles, Journal of the American Chemical Society, 126 (2004) 10076-10084.

A.B. Lowe, B.S. Sumerlin, M.S. Donovan, C.L. McCormick, Facile preparation of transition metal nanoparticles stabilized by well-defined (co) polymers synthesized via aqueous reversible addition-fragmentation chain transfer polymerization, Journal of the American Chemical Society, 124 (2002) 11562-11563.

A. Maestro, E. Guzmán, E. Santini, F. Ravera, L. Liggieri, F. Ortega, R.G. Rubio, Wettability of silica nanoparticle–surfactant nanocomposite interfacial layers, Soft Matter, 8 (2012) 837-843.

M. Moore, Do nanoparticles present ecotoxicological risks for the health of the aquatic environment?, Environment international, 32 (2006) 967-976.

P. Raveendran, J. Fu, S.L. Wallen, Completely “green” synthesis and stabilization of metal nanoparticles, Journal of the American Chemical Society, 125 (2003) 13940-13941.

N. Wangoo, K. Bhasin, S. Mehta, C.R. Suri, Synthesis and capping of water-dispersed gold nanoparticles by an amino acid: bioconjugation and binding studies, Journal of colloid and interface science, 323 (2008) 247-254.

J. Xu, M. Howson, B. Hickey, D. Greig, P. Veillet, E. Kolb, Giant magnetoresistance and super-paramagnetism in Co/Au multilayers, Journal of magnetism and magnetic materials, 156 (1996) 379-380.

M. Ben-Sasson, X. Lu, S. Nejati, H. Jaramillo, M. Elimelech, In situ surface functionalization of reverse osmosis membranes with biocidal copper nanoparticles, Desalination, 388 (2016) 1-8.

J.A. Eastman, S. Choi, S. Li, W. Yu, L. Thompson, Anomalously increased effective thermal conductivities of ethylene glycol-based nanofluids containing copper nanoparticles, Applied physics letters, 78 (2001) 718-720.

Y. Guo, F. Cao, X. Lei, L. Mang, S. Cheng, J. Song, Fluorescent copper nanoparticles: recent advances in synthesis and applications for sensing metal ions, Nanoscale, 8 (2016) 4852-4863.

A. Khan, A. Rashid, R. Younas, R. Chong, A chemical reduction approach to the synthesis of copper nanoparticles, International Nano Letters, 6 (2016) 21-26.

Z. Qing, X. He, D. He, K. Wang, F. Xu, T. Qing, X. Yang, Poly (thymine)‐Templated Selective Formation of Fluorescent Copper Nanoparticles, Angewandte Chemie International Edition, 52 (2013) 9719-9722.

J. Ramyadevi, K. Jeyasubramanian, A. Marikani, G. Rajakumar, A.A. Rahuman, Synthesis and antimicrobial activity of copper nanoparticles, Materials letters, 71 (2012) 114- 116.

K.-Y. Yoon, J.H. Byeon, J.-H. Park, J. Hwang, Susceptibility constants of Escherichia coli and Bacillus subtilis to silver and copper nanoparticles, Science of the Total Environment, 373 (2007) 572-575.

H. Huang, F. Yan, Y. Kek, C. Chew, G. Xu, W. Ji, P. Oh, S. Tang, Synthesis, characterization, and nonlinear optical properties of copper nanoparticles, Langmuir, 13 (1997) 172-175.

K. Larmier, W.C. Liao, S. Tada, E. Lam, R. Verel, A. Bansode, A. Urakawa, A. Comas‐Vives, C. Copéret, CO2‐to‐Methanol Hydrogenation on Zirconia‐Supported Copper Nanoparticles: Reaction Intermediates and the Role of the Metal–Support Interface, Angewandte Chemie, 129 (2017) 2358-2363.

A. Rotaru, S. Dutta, E. Jentzsch, K. Gothelf, A. Mokhir, Selective dsDNA‐Templated Formation of Copper Nanoparticles in Solution, Angewandte Chemie International Edition, 49 (2010) 5665-5667.

K.D. Bhatt, D.J. Vyas, B.A. Makwana, S.M. Darjee, V.K. Jain, Highly stable water dispersible calix [4] pyrrole octa-hydrazide protected gold nanoparticles as colorimetric and fluorometric chemosensors for selective signaling of Co (II) ions, Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 121 (2014) 94-100.

K.D. Bhatt, D.J. Vyas, B.A. Makwana, S.M. Darjee, V.K. Jain, H. Shah, Turn-on fluorescence probe for selective detection of Hg (II) by calixpyrrole hydrazide reduced silver nanoparticle: Application to real water sample, Chinese Chemical Letters, 27 (2016) 731-737.

A. Kongor, M. Panchal, M. Athar, V. Mehta, K. Bhatt, P. Jha, V. Jain, Heterogeneous hydrogenation using stable and reusable calix [4] pyrrole fenced Pt nanoparticles and its mechanistic insight, Applied Surface Science, (2017).

B.A. Makwana, D.J. Vyas, K.D. Bhatt, S. Darji, V.K. Jain, Novel fluorescent silver nanoparticles: sensitive and selective turn off sensor for cadmium ions, Applied Nanoscience, 6 (2016) 555-566.

B.A. Makwana, D.J. Vyas, K.D. Bhatt, V.K. Jain, Selective sensing of copper (II) and leucine using fluorescent turn on–off mechanism from calix [4] resorcinarene modified gold nanoparticles, Sensors and Actuators B: Chemical, 240 (2017) 278-287.

B.A. Makwana, D.J. Vyas, K.D. Bhatt, V.K. Jain, Y.K. Agrawal, Highly stable antibacterial silver nanoparticles as selective fluorescent sensor for Fe 3+ ions, Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 134 (2015) 73-80.

D.R. Mishra, S.M. Darjee, K.D. Bhatt, K.M. Modi, V.K. Jain, Calix protected gold nanobeacon as turn-off fluorescent sensor for phenylalanine, Journal of Inclusion Phenomena and Macrocyclic Chemistry, 82 (2015) 425-436.

D.J. Vyas, B.A. Makwana, H.S. Gupte, K.D. Bhatt, V.K. Jain, An efficient one pot synthesis of water-dispersible calix [4] arene polyhydrazide protected gold nanoparticles-A “turn off” fluorescent sensor for Hg [II] ions, Journal of nanoscience and nanotechnology, 12 (2012) 3781-3787.

E.M. Egorova, A.A. Revina, Colloids Surf. A 168, 87 (2000). [30] Kaminskiene a, I. Prosy£evasa , J. Stonkute b and A. Guobiene a,c, PhysPolA.123.111

Published
2019-05-28
How to Cite
Keyur Bhatt, Ajay Desai, Vishal Pillai, & Kavit Mehta. (2019). Synthesis & characterization of copper nanoparticles using LASIS and chemical reduction technique. IJRDO-Journal of Applied Science, 5(5), 01-07. https://doi.org/10.53555/as.v5i5.2860