

JOURNAL OF COMPUTER SCIENCE AND ENGINEERING

FUZZY REGRESSION BASED CLUSTERING ON

 UNCERTAIN DATA

R.Ramya Dr.R.Kalpana ,Professor

Department of Computer Science & Engineering Department of Computer Science & Engineering

IFET College of Engineering, Villupuram, India IFET College of Engineering, Villupuram, India

ramyaramkavi@gmail.com

ABSTRACT:

In recent centuries, a number of indirect data

collection methodologies have led to the proliferation of

uncertain data. Such data points are often represented in the

form of a probabilistic function, since the corresponding

deterministic value is not known. The modeling of imprecise

and qualitative knowledge, as well as handling of uncertainty

at various stages is possible through the use of fuzzy sets.

Fuzzy logic is capable of supporting to a reasonable extent,

human type reasoning in natural form by allowing partial

membership for data items in fuzzy subsets. Integration of

fuzzy logic and kl divergence in data mining has become a

powerful tool in handling natural data. Introduce the concept

of fuzzy clustering and also the benefits of incorporating

fuzzy logic with kl divergence in data mining. Finally it

provides a comparative analysis of fuzzy clustering

algorithms namely association rule based fuzzy.

Keywords- Regression testing, Test case selection, Fuzzy

logic, Selection probability. I.

 INTRODUCTION:

Fuzzy regression is the common term which is

required for the proper functioning of the system.

Maintenance of the fuzzy cluster is mainly concerned with

the related modifications to the system. These modifications

may be due to changing user needs, error correction,

improved performance, adaptation to changed environment,

optimization etc. This adaptation of the fuzzy cluster system

to data mining makes a completely modified fuzzy cluster

system. Modified system breaks the previously verified

functionalities of the system, which causes faults. This

requires fuzzy cluster regression testing for detecting such

faults. Studies show that fuzzy cluster maintenance activities

on an average account for two third of the overall fuzzy

cluster cost. Fuzzy cluster maintenance is frequently

required to fix defects, enhance or adapt the existing

functionalities of the fuzzy cluster. One necessary

maintenance activity is regression testing, which is the

process of validating modified fuzzy cluster in order to

provide confidence t h a t the fuzzy cluster behaves

correctly and the modification has not lead to degradation

Of fuzzy cluster quality. The dominant strategy for

performing regression testing is to rerun the test cases

that are available from the earlier version of the fuzzy

cluster. Regression testing is expensive, often accounts for

almost one-half of the total cost of fuzzy cluster

maintenance [1]. Running all the test cases in a test suite

requires a large amount of effort and time. A report

shows that it took 1000 machine hours to execute

approximately 30,000 functional test cases. Hundreds of

man-hours are spent by test engineers to monitor the process

of regression testing [2]. For this reason minimization of

regression testing effort for reducing fuzzy cluster

maintenance costs has become an issue of considerable

practical importance. After development and release, fuzzy

cluster undergo regress maintenance phase [3].

A. Regression Testing

(RT)

It is an integral part of the fuzzy cluster development

method. RT is defined as “the process of retesting the

modified parts of the fuzzy cluster and ensuring that no new

regression errors have been introduced into previously

unmodified part of the program”. Regression test end up

forming a safety net that makes refactoring easier and

maintenance work less scary. It is associated with system

testing only when there is the change in the code.

There are various RT techniques shown in fig.1:

IJRDO - Journal of Computer Science and Engineering ISSN: 2456-1843

Volume-1 | Issue-3 | March, 2015 | Paper-13 94

 Fig 1: Techniques of Regression Testing

1) Retest all: It is one of the conventional methods of

regression techniques. This method reruns all the test

cases in the test suite. But, it consumes excessive time and

resources as compared to other techniques.

2) Regression Test Selection (RTS): Due to expensive

nature of “retest all” technique an alternative approach

called Regression Test Selection or we can say selective

retest is performed [4].In this technique instead of rerunning

the whole test suite, it selects a subset of valid test cases

from an initial test suite that are necessary to test the

modified program [5].It attempts to reduce the time required

to retest a modified program and also reduces the testing

costs in environment where the program undergoes frequent

modifications. Formally, RTS problem is defined as follows:

 Let P be an application program and P’ be a modified

version of P. Let T be the initial test suite for testing P.

An RTS technique aims to select a subset of test cases T’

subset of T to be executed on P’, such that every error

detected when P’ is executed with T is also detected when P’

is executed with T’ [6].

RTS consists of two major activities:

i) Identification of the affected part.

ii) Test Case Selection.

RTS divides the existing test suite into Obsolete,

Retestable, and Reusable test cases [7].

- Obsolete test cases are not valid for the modified

program.

- Retestable test cases execute the modified and

the affected parts of the program and need to be

rerun during regression testing.

- Reusable test cases execute only the unaffected

parts of the program.

RTS techniques are broadly classified into three

categories:

i. Coverage-based selection technique:

It locates program components that have been modified

or affected by modifications, and select test cases that

exercise those components.

ii. Minimization-based selection technique:

Similar to coverage techniques except that they select

the smallest subset of test cases that can satisfy some

minimum coverage criteria for the modified parts of the

code [8][9][10][11].

iii. Safe Selection Technique:

Minimization techniques omit some fault-revealing test

cases. To eliminate the possibility of missing faults, safe

selection technique was introduced. It selects every test in T

that can expose one or more faults in P’. It guarantees that

the discarded test cases do not reveal faults [12] [13].

3) Regression Test Prioritization (RTP): It orders

the test cases in such a way that the overall rate of fault

detection increases. Test cases having higher fault

detection capability are given higher priority and are taken

up for execution earlier. It is very much advantageous as

the errors are detected and reported to the development

team earlier.

4) Hybrid Approach: It is the combination of both

RTS and RTP.

B. Fuzzy Logic

Fuzzy logic is a convenient way to map an input space

to output space through fuzzy inference process. It is

basically a multivalued logic which permits intermediate

values to be defined between conventional evaluations.

Fuzzy logic gives the ability to quantify and reason with

words having ambiguous meanings. That is why it is the

best choice for managing contradicting, doubtful and

ambiguous opinions.

Fuzzy logic is formed with the combinations of four

concepts as shown in fig.2:

Fig.2: Fuzzy Concepts

Fuzzy sets are expressed as the set of ordered pairs [14]

as shown in equation (1):

A = {(x, µA(x)) | x ε X, µA(x): X Æ [0, 1]} (1)

IJRDO - Journal of Computer Science and Engineering ISSN: 2456-1843

Volume-1 | Issue-3 | March, 2015 | Paper-13 95

JOURNAL OF COMPUTER SCIENCE AND ENGINEERING

Where A is the fuzzy set, (x, µA(x)) is the membership

function and rest is the universe of discourse. Example:

Word like Good. There is no single value which can define

the term well; it differs from person to person. It has no

clear boundary.

Simple way of forming membership functions is using

straight lines. In this paper we have used triangular

membership function, which is a simplest form using

straight lines. It is the collection of three points forming a

triangle. Logical operations are used to combine more than

one inputs and conditions together for inference. There are

three main logical operators namely AND, OR and NOT.

For all possible combinations of the inputs If-Then rules are

framed. The overall fuzzy process is shown in fig.3.

This paper proceeds by describing the related work and

previous works on regression testing and fuzzy logic in

the next section. Section 3 discusses factors for test case

selection probability estimation. Section 4 presents the

proposed. Section 5 presents the implementation of the

model , and

Section 6 discusses overall conclusion and future work.

Fig.3: Stages of Fuzzy logic processing

II. RELATED WORK

Fuzzy cluster testing tells whether a program is

correct, by showing that it produces correct output over

some finite subset of input. When we develop fuzzy cluster

we use development testing, when we modify fuzzy cluster

we retest it, which is called as RT. It serves many purposes

with the primary one to increase confidence in the

correctness and locate errors in the modified program.

Development testing and RT is different from each other in

many aspects:

- Development test requires creation of test suites,

whereas regression test uses existing test suites.

- Development test requires testing of all fuzzy

cluster components whereas regression test only

test modified part and the part which is affected by

the modification.

- Development test gets time for testing whereas

regression test is performed in crisis situation,

under time constraints.

- Development test is costly, performed only once

whereas RT is performed many times.

Research on RT spans a wide variety of topics. The

issue that has seen the greatest amount of research, however,

is the selective retest problem. The process of finding

minimal subset of test cases that can cover each element of

the system started in the year 1977 by K. Fischer in his

paper “A Test Case Selection Method for the Validation of

Fuzzy cluster maintenance modifications” [15]. Later this

technique was extended in the year 1981 by Fischer, Raji

and Chruscicki. They had given a methodology for retesting

modified fuzzy cluster [16]. Yau and Kishimoto had

given “A method for revalidating modified programs in

the maintenance phase” in the year 1987 [17]. In this a

selection method was presented that depends on input

partitions, and uses symbolic execution to determine tests

that traverse modified blocks. Their method relies on

knowledge of modifications, and is computationally

expensive due to the use of symbolic execution. Ostrand and

Weyuker had done analysis for regression techniques using

dataflow-based regression testing methods in September

1988 [18]. Lewis, Beck and Hartmann had proposed a

tool to support regression testing in September 1989

[19]. The greatest drawback of these methods is that they

require prior knowledge of modifications. Leung and White

provided insights into regression testing in October 1989

IJRDO - Journal of Computer Science and Engineering ISSN: 2456-1843

Volume-1 | Issue-3 | March, 2015 | Paper-13 96

JOURNAL OF COMPUTER SCIENCE AND ENGINEERING

[7] and given a model to compare regression testing

strategies in 1991. Binkley used semantic differencing to

reduce the cost of regression testing in November 1992

[20]. Chen, Rothermel and Vo provided a system for

selective regression testing in 1994 [21]. Rothermel and

Harrold had analyzed the regression testing selection

techniques in August 1996 [22] and given a safe, efficient

regression test selection technique in 1997 [23]. In 2001

Rothermel, Untch, Chu and Harrold had provided a

technique for prioritizing test cases for regression testing.

Yoo and Harman had given method for multi-objective test

case selection in 2007 and in 2012 they had discussed open

problems and given potential directions of future research in

their survey of regression testing minimization, selection

and prioritization techniques [24]. Engstrom, Runeson and

Skoglund systematically reviewed the regression test

selection techniques in January 2010. Amir Ngah had

proposed a model for RTS using the decomposition slicing

technique in his PhD thesis on RTS by exclusion in

May 2012 [25]. In July, 2012 Siavash Mirarab et.al

H a d given a multicriterion s basedmization for size-

constrained RTS [26]. In the same month Jianchun Xing et.al

had given a safe RTS based on program dependence graphs

of a program and its modified version [27]. Prevus research

in the field of RTS has not focused on industrial contexts.

Alex Augustsson in 2012 had introduced a framework for

evaluating RTS techniques in industry [28].

Research on Fuzzy was first proposed by L. Zadeh

in his paper “Fuzzy Sets” in the year 1965 [29]. More

information about fuzzy logic was given by Klir and Folger

in 1988. They had given uncertainty and information on

fuzzy sets [30]. W. Pedycz had given fuzzy control and

fuzzy systems in 1993 [31]. In the very next year Driankon,

Hellendour and Reinfark had added to fuzzy control [32].

Finally in the 1999, Novak, Perilieva and Mockor had

given the mathematical principles of fuzzy logic [33].

Researches using fuzzy logic for the purpose of

regression test case selection and prioritization are very scant.

Xu, Gao and Khoshgoftaar had firstly shown the application

of fuzzy expert system in regression test selection in 2005

[34]. Later in 2011 Praveen, Sirish and Raghurama of BITS

pilani had given fuzzy criteria for assessing the fuzzy cluster

testing effort [35]. In 2012 Ali M. Alakeel had proposed a

fuzzy test cases prioritization technique for regression testing

with assertions [36] and also fuzzy logic was used for

prioritizing test cases for GUI based fuzzy cluster [37].

Recently, in 2013 H.B. Gupta et.al used fuzzy logic for

regression technique [38].In our paper we use fuzzy rule

base for the test case selection probability estimation [39].

 III.FACTORS FOR TEST CASE

SELECTION PROBABILITY ESTIMATION

We have taken three main factors to calculate the selection

probability of a test case:

A. Code covered

 B. Execution

C. Class covered

There may be many more factors which may be taken up

for this calculation but these are the three main factors

which have the most effect.

A. Code covered

This indicates the portion of the code covered by a

particular test case. This may be number of lines covered

by the test case, number of statements covered by the test

case, number of functions covered and number of program

branches covered. Test cases with highest level of code

coverage are run first. We selected code covered as a factor

for estimating the test case selection probability because it

is believed that the test cases which cover more code have

higher rate of fault detection

B. Execution time

This indicates the time required for a particular test case

to complete its execution [41]. It may or may not include

the loading time. Test cases having minimum execution

time are given weightage and are executed first. We selected

execution time as a factor for estimating the test case

selection probability because it helps in selecting and

reordering the execution of test cases ensuring that

defects are revealed earlier in the test execution phase.

Hence, ET ∞ 1/ test case selection probability

C. Faults covered

Similar to code covered it indicates the number of faults

covered by a particular test case. Basically, it tells about the

number of uncovered faults. Test cases which are capable of

detecting or we may say covering more number of faults are

taken up for execution first. We selected faults covered as a

factor for estimating the test case selection probability

because it is the most important parameter to be considered

during testing [42]. More the number of faults is detected by

a particular test case more effective will be that test case.

Hence, FC test case selection probability

IV. PROPOSED MODEL

This paper gives a Regression Test Case Selection

Technique based on fuzzy model, which uses the factors

listed under section 3 for estimating the test case selection

probability. Individual value of any factor may not provide

the appropriate value for selection probability. So we use

IJRDO - Journal of Computer Science and Engineering ISSN: 2456-1843

Volume-1 | Issue-3 | March, 2015 | Paper-13 97

fuzzy rule based approach which considers all the factors

and their relative values simultaneously for estimating the

selection probability. The basic fuzzy inference is expressed

as shown in fig.4.

The model used in this paper contains three inputs

namely code covered, execution time, faults covered and

one output i.e. selection probability. For all the inputs and

output, membership functions are chosen and the values

for each membership functions corresponding to each inputs

and output is defined.

In this concept clustering of an object can be established with

the fuzzy based on the different inputs. The membership

function which allows partial cluster and this increases the

efficiency also. When compared to distance based clustering rule

based clustering gives powerful result and thus probability

estimation gives in this model

A. Membership functions and values for

Inputs

Here, Code covered = CC; Execution time = ET;

Faults covered = FC

LOW; 0 ≤ CC ≤ 0.38

µA (CC) = MEDIUM; 0.32 ≤ CC ≤ 0.65

HIGH; 0.62 ≤ CC ≤ 1

 LOW; 0≤1

µA (ET) = MEDIUM; 0.24 ≤ ET ≤ 0.59

HIGH; 0.52 ≤ ET ≤ 1

LOW; 0 ≤ FC ≤ 0.34

VERY LOW; 0 ≤ SP ≤ 0.14

 LOW; 0.12 ≤ SP ≤ 0.33

µA (SP) = MEDIUM; 0.29 ≤ SP ≤

0.56

 HIGH; 0.51 ≤ SP ≤ 0.71

VERY HIGH; 0.65 ≤ SP ≤ 1

C. Rule

It is basically a storage space associated with the model,

which stores the knowledge related to the subject in the

form of “If-Then” rules. Rules are formed with the

composition of inputs and output, and each rule individually

represents a condition-action statement in human

understandable format. In this paper we consider all possible

combinations of inputs getting a total of 3
3

= 27 sets.

Based on these 27 sets of combinations a total of 27 rules

are formed to constitute a complete rule base for the model.

Some of the rules are as shown in fig.5.

The membership values are defined based on the data

collected from the classroom projects. The rules are formed

on the basis of the collected data and expert advice.

In this model we use ‘Mamdani’ style for inference, one of

the two available fuzzy inference systems. For combining

together all the obtained results we use MAX method.

D. Working of the model

This model works as:

Step 1) Inputs corresponding to each factor is taken in crisp

format, and is converted into fuzzy form.

Step2) Based on the membership functions value

corresponding to each input factors, appropriate rule

is fired.

Step 3) All inputs are taken together simultaneously, for

this we use AND operator in order to combine the

inputs together.

Step 4) MIN method is used for evaluating AND operator.

Step 5) All the results obtained is aggregated using MAX

method

Step 6) Finally, the aggregated result is defuzzified using

centroid method.

Step 7) Step 1 to step 6 is repeated for different inputs.

Model one by one. The appropriate rule is fired

based on the input values and the output for the

selection probability is produced for each pair of

input values.

Considering an example, let the inputs be:

Code covered = 0.63; Execution time = 0.25; Faults

covered = 0.54

IJRDO - Journal of Computer Science and Engineering ISSN: 2456-1843

Volume-1 | Issue-3 | March, 2015 | Paper-13 98

VOL 2 ISSUE 3 MARCH 2015 Paper 13

JOURNAL OF COMPUTER SCIENCE AND ENGINEERING

These are the crisp inputs. So, firstly we convert

these crisp values into fuzzy values.

A.fuzification

It is seen from fig.6 that the value 0.63 belongs to both

MEDIUM and HIGH set. So we need to get the fuzzy

values corresponding to both MEDIUM and HIGH set.

Let ‘x’ represents the crisp values and ‘y’ represents the

fuzzy values. Here, x = 0.63 and y =???

For MEDIUM, end-points of the corresponding line is:

[(0.45, 1) and (0.65, 0)]

So, equation (2) gives the equation of the line

as:

(y – y1) = {(y2 – y1) / (x2 – x1)} * (x – x1)

(2)

Here, (x1, x2) and (y1,, y2) are the end-points of the

line. so, y = [{(0-1) / (0.65-0.45)} * (0.63-0.45)] + 1

or, y = [(-5) * (0.18)] +

1 or, y = 0.1

For HIGH, end-points of the corresponding line is:

[(0.62,0) and (0.75,1)]

So, equation (3) gives the equation of the line

as:

(y – y1) = {(y2 – y1) / (x2 – x1)} * (x – x1)

(3) Here, (x1, x2) and (y1, y2) are the end-points of the

line. So, y = [{(1-0) / (0.75 – 0.62)} * (0.63-0.62)] +0

Or, y = [(7.6923) * (0.01)]+

0 or, y = 0.0769

Similarly, the fuzzy value for the other two inputs is

found.

2) Execution Time: It is 0.0588 in MEDIUM set and 0.3333

in LOW set.

3) Faults Covered: It is 0.4545 in MEDIUM set and 0.1995

in HIGH set.

B. Rule Selection

Based on these values the rules fired are:

Here, VL = Very Low, L = Low, M = Medium, H =

High and VH = Very High

Code covered == M) & (execution time == L) & (faults

covered == M) => (selection probability = H).

Code covered == M) & (execution time == L) & (faults

covered == H) => (selection probability = VH).

Code covered == M) & (execution time == M) & (faults

covered == M) => (selection probability = M).

Code covered == M) & (execution time == M) & (faults

covered == H) => (selection probability = H).

Code covered == H) & (execution time == L) & (faults

covered == M) => (selection probability = H).

Code covered == H) & (execution time == L) & (faults

covered == H) => (selection probability = VH).

Code covered == H) & (execution time == M) & (faults

covered == M) => (selection probability = H).

Code covered == H) & (execution time == M) & (faults

covered == H) => (selection probability = VH).

C. Rule Evaluation

As shown in fig.7, the selection probability medium, high

and very high category. Therefore,

1) µselection probability=M= max [min {µcode covered=M

(0.63), µexecution time=M (0.25),

µfaults covered=M (0.54)}]= max [min {0.1, 0.0588, 0.4545}]

= 0.0588

2) µselection probability=H=Max [min {µcode covered=M

(0.63), µexecution time=L (0.25),

µfaults covered=M (0.54)}, min {µcode covered=M (0.63),

µexecution time=M (0.25), = max [0.1, 0.0769, 0.0588] =

0.1

D. Defuzzification

The above obtained fuzzy output is finally put to

defuzzification in order to get the crisp value against

the output variable selection probability. Out of several

methods available for defuzzification we choose the

Centroid method [44].

 In this the Centre of Gravity (COG) is

calculated for the area under the curve using equation:

µfaults covered=H (0.54)}, min {µcode covered=H (0.63),

µexecution time=L (0.25),

µfaults covered=M (0.54)}, min {µcode covered=H (0.63),

µexecution time=M (0.25),

µfaults covered=M (0.54)}]

IJRDO - Journal of Computer Science and Engineering ISSN: 2456-1843

Volume-1 | Issue-3 | March, 2015 | Paper-13 99

JOURNAL OF COMPUTER SCIENCE AND ENGINEERING

= max [min {0.1, 0.3333, 0.4545},

min {0.1, 0.0588, 0.1905},

min {0.0769, 0.3333, 0.4545},

min {0.0769, 0.0588, 0.4545}]

= max [0.1, 0.0588, 0.0769, 0.0588]

= 0.1

3) µselection probability=VH=max [min {µcode covered=M

(0.63), µexecution time=L (0.25),

µfaults covered=H (0.54)}, min {µcode covered=H (0.63),

µexecution time=L (0.25),

µfaults covered=H (0.54)}, min {µcode covered=H (0.63),

µexecution time=M (0.25),

µfaults covered=H (0.54)}]= max [min {0.1, 0.3333,

0.1905}, min {0.0769, 0.3333, 0.1905}, min {0.0769,

0.0588, 0.1905}]

V. EVALUATION

The proposed rules were also processed with the

designed fuzzy model in MATLAB; the selection

probability against each input values were found (shown as

modeled selection probability in table 1). For the purpose of

evaluation we used the Root Mean Square Error (RMSE)

method, which is used to measure the difference between

the actual obtained value from the calculation that is being

modeled and the value predicted by the model. RMSE is

defined as the square root of the mean squared error as

shown in equation

VI. CONCLUSION

This paper proposed a fuzzy model for estimation of the

selection probability for regression test case. The model

estimates the probability based on three important factors

namely code covered, execution time and faults covered.

The fuzzy approach is used to combine these inputs and

reach at the estimation of the probability for selecting a

test case. Fuzzy logic is a powerful tool which gives the

ability to quantify with the contradicting, doubtful and

ambiguous opinions. The selection of factors has been made

based on some expert advice. However the results obtained

are very close to the actual results. The only limitation is

that, in this paper we have considered only three important

test case selection factors. However there may be few more

factors, which may be added. There may be the number of

extensions of the model by using techniques like artificial

neural network and neuro fuzzy approach. This is left as

future work.

VII.REFERENCES

[1] S. Abiteboul, P. Kanellakis, and G. Grahne, “On the

Representation and Querying of Sets of Possible Worlds,”

Proc. ACM SIGMOD, 1987.

[2] Managing and Mining Uncertain Data, C. Aggarwal, ed.

Springer, 2009.

 [3] P. Andritsos, A. Fuxman, and R.J. Miller, “Clean

Answers over Dirty Databases: A Probabilistic Approach,”

Proc. 22nd IEEE Int'l Conf. Data Eng. (ICDE), 2006.

 [4] L. Antova, C. Koch, and D. Olteanu, “From Complete to

Incomplete Information and Back,” Proc. ACM SIGMOD,

2007.

[5] L. Antova, C. Koch, and D. Olteanu, “$10^ {(10^{6})}$

Worlds and Beyond: Efficient Representation and Processing

of Incomplete Information,” Proc. 23rd IEEE Int'l Conf. Data

Eng. (ICDE), 2007.

 [6] L. Antova, T. Jansen, C. Koch, and D. Olteanu, “Fast and

Simple Relational Processing of Uncertain Data,” Proc. 24th

IEEE Int'l Conf. Data Eng. (ICDE), 2008.

[7] C.C. Aggarwal and P.S. Yu, “Outlier Detection with

Uncertain Data,” Proc. SIAM Int'l Conf. Data Mining (SDM),

2008.

 [8] C.C. Aggarwal, “On Unifying Privacy and Uncertain Data

Models,” Proc. 24th IEEE Int'l Conf. Data Eng. (ICDE),

2008.

[9] C.C. Aggarwal, “On Density Based Transformations for

Uncertain Data Mining,” Proc. 23rd IEEE Int'l Conf. Data

Eng. (ICDE), 2007.

[10] C.C. Aggarwal and P.S. Yu, “A Framework for

Clustering Uncertain Data Streams,” Proc. 24th IEEE Int'l

Conf. Data Eng. (ICDE), 2008.

 [11] C.C. Aggarwal, J. Han, J. Wang, and P.S. Yu, “A

Framework for Clustering Evolving Data Streams,” Proc.

29th Int'l Conf. Very Large Data Bases (VLDB), 2003.

[12] M. Arenas, L. Bertossi, and J. Chomicki, “Consistent

Query Answers in Inconsistent Databases,” Proc. 18th ACM

Symp. Principles of Database Systems (PODS), 1999.

 [13] M. Ankerst, M.M. Breunig, H.-P. Kriegel, and J. Sander,

“OPTICS: Ordering Points to Identify the Clustering

Structure,” Proc. ACM SIGMOD, 1999.

[14] D. Barbara, H. Garcia-Molina, and D. Porter, “The

Management of Probabilistic Data,” IEEE Trans. Knowledge

and Data Eng., vol. 4, no. 5, pp. 487-502, Oct. 1992.

[15] D. Bell, J. Guan, and S. Lee, “Generalized Union and

Project Operations for Pooling Uncertain and Imprecise

Information,” Data and Knowledge Eng., vol. 18, no. 2, 1996.

[16] O. Benjelloun, A. Das Sarma, A. Halevy, and J. Widom,

IJRDO - Journal of Computer Science and Engineering ISSN: 2456-1843

Volume-1 | Issue-3 | March, 2015 | Paper-13 100

http://doi.ieeecomputersociety.org/resolve?ref_id=doi:10.1109/69.166990&rfr_id=trans/tk/2009/05/ttk2009050609.htm
http://doi.ieeecomputersociety.org/resolve?ref_id=doi:10.1109/69.166990&rfr_id=trans/tk/2009/05/ttk2009050609.htm
http://doi.ieeecomputersociety.org/resolve?ref_id=doi:10.1109/69.166990&rfr_id=trans/tk/2009/05/ttk2009050609.htm

JOURNAL OF COMPUTER SCIENCE AND ENGINEERING

“ULDBs: Databases with Uncertainty and Lineage,” Proc.

32nd Int'l Conf. Very Large Data Bases (VLDB), 2006.

[17] J. Bi and T. Zhang, “Support Vector Machines with Input

Data Uncertainty,” Proc. Advances in Neural Information

Processing Systems (NIPS), 2004.

 [18] C. Bohm, A. Pryakhin, and M. Schubert, “The Gauss-

Tree: Efficient Object Identification of Probabilistic Feature

Vectors,” Proc. 22nd IEEE Int'l Conf. Data Eng. (ICDE),

2006.

 [19] C. Bohm, P. Kunath, A. Pryakhin, and M. Schubert,

“Querying Objects Modeled by Arbitrary Probability

Distributions,” Proc. 10th Int'l Symp. Spatial and Temporal

Databases (SSTD), 2007.

 [20]D.Burdick,P. Deshpande, T.S. Jayram, R. Ramakrishnan,

and S. Vaithyanathan, “OLAP over Uncertain and Imprecise

Data,” Proc. 31st Int'l Conf. Very Large Data Bases (VLDB

'05), pp.970-981, 2005.

 [21] D. Burdick, A. Doan, R. Ramakrishnan, and S.

Vaithyanathan, “OLAP over Imprecise Data with Domain

Constraints,” Proc. 33rdInt'l Conf. Very Large Data Bases

(VLDB), 2007.

 [22] R. Cavello and M. Pittarelli, “The Theory of

Probabilistic Databases,” Proc. 13th Int'l Conf. Very Large

Data Bases (VLDB), 1987.

 [23] A.L.P. Chen, J.-S. Chiu and F.S.-C. Tseng, “Evaluating

Aggregate Operations over Imprecise Data,” IEEE Trans.

Knowledge and Data Eng., vol. 8, no. 2, pp. 273-284, Apr.

1996.

 [24] R. Cheng, Y. Xia, S. Prabhakar, R. Shah, and J. Vitter,

“Efficient Indexing Methods for Probabilistic Threshold

Queries over Uncertain Data,” Proc. 30th Int'l Conf. Very

Large Data Bases (VLDB), 2004.

 [25] R. Cheng, D. Kalashnikov, and S. Prabhakar,

“Evaluating Probabilistic Queries over Imprecise Data,” Proc.

ACM SIGMOD, 2003.

 [26] R. Cheng, S. Singh, S. Prabhakar, R. Shah, J. Vitter, and

Y. Xia, “Efficient Join Processing over Uncertain-Valued

Attributes,” Proc. 15th ACM Int'l Conf. Information and

Knowledge Management (CIKM), 2006.

 [27] R. Cheng, Y. Xia, S. Prabhakar, R. Shah, J. Vitter, and

Y. Xia, “Efficient Join Processing over Uncertain Data,”

Technical Report CSD TR# 05-004, Dept. of Computer

Science, Purdue Univ., 2005.

 [28] R. Cheng, D. Kalashnikov, and S. Prabhakar, “Querying

Imprecise Data in Moving Object Environments,” IEEE

Trans. Knowledge and Data Eng., vol. 16, no. 9, pp. 1112-

1127, Sept. 2004.

[29] C.-K. Chui, B. Kao, and E. Hung, “Mining Frequent Item

sets from Uncertain Data,” Proc. 11th Pacific-Asia Conf.

Knowledge Discovery and Data Mining (PAKDD), 2007.

[30] J.M. Ponte and W.B. Croft, “A Language Modeling

Approach to Information Retrieval,” Proc. 21st Ann. Int’l

ACM SIGIR Co.

[31] A.D. Sarma, O. Benjelloun, A.Y. Halevy, and J. Widom,

“Working Models for Uncertain Data,” Proc. Int’l Conf. Data

Eng. (ICDE), 2006.

[32] D.W. Scott, Multivariate Density Estimation: Theory,

Practical, and Visualization. Wiley, 1992.

[33] B.W. Silverman, Density Estimation for Statistics and

Data Analysis.Chapman and Hall, 1986.

[34] F. Song and W.B. Croft, “A General Language Model

for Information Retrieval,” Proc. Int’l Conf. Information and

Knowledge Management (CIKM), 1999.

[35] Y. Tao, R. Cheng, X. Xiao, W.K. Ngai, B. Kao, and S.

Prabhakar,“Indexing Multi-Dimensional Uncertain Data with

Arbitrary Probability Density Functions,” Proc. Int’l Conf.

Very Large Databases (VLDB), 2005.

[36] P.B. Volk, F. Rosenthal, M. Hahmann, D. Habich, and

W. Lehner,“Clustering Uncertain Data with PossibleWorlds,”

Proc. IEEE Int’lConf. Data Eng. (ICDE), 2009.

[37] J. Xu and W.B. Croft, “Cluster-Based Language Models

for Distributed Retrieval,” Proc. 22nd Ann. Int’l ACM SIGIR

Conf. Research and Development in Information Retrieval

(SIGIR), 1999.

[38] C. Yang, R. Duraiswami, N.A. Gumerov, and L.S.

Davis, “Improved Fast Gauss Transform and Efficient Kernel

Density Estimation,” Proc. IEEE Int’l Conf. Computer Vision

(ICCV), 2003.

[39] D. Florescu, D. Koller, and A. Levy, “Using

Probabilistic Information in Data Integration,” Proc. 23rd

Int'l Conf. Very Large Data Bases (VLDB), 1997.

[40] N. Friedman, L. Getoor, D. Koller, and A. Pfeffer,

“Learning Probabilistic Relational Models,” Proc. 16th Int'l

Joint Conf. Artificial Intelligence (IJCAI), 1999.

 [41] N. Fuhr and T. Rolleke, “A Probabilistic Relational

Algebra for the Integration of Information Retrieval and

Database Systems,” ACM Trans. Information Systems, 1997.

[42] A. Fuxman, E. Fazli, and R.J. Miller, “Conquer:

Efficient Management of Inconsistent Databases,” Proc.

ACM SIGMOD, 2005.

IJRDO - Journal of Computer Science and Engineering ISSN: 2456-1843

Volume-1 | Issue-3 | March, 2015 | Paper-13 101

http://doi.ieeecomputersociety.org/resolve?ref_id=doi:10.1109/69.494166&rfr_id=trans/tk/2009/05/ttk2009050609.htm
http://doi.ieeecomputersociety.org/resolve?ref_id=doi:10.1109/69.494166&rfr_id=trans/tk/2009/05/ttk2009050609.htm
http://doi.ieeecomputersociety.org/resolve?ref_id=doi:10.1109/69.494166&rfr_id=trans/tk/2009/05/ttk2009050609.htm
http://doi.ieeecomputersociety.org/resolve?ref_id=doi:10.1109/69.494166&rfr_id=trans/tk/2009/05/ttk2009050609.htm
http://doi.ieeecomputersociety.org/resolve?ref_id=doi:10.1109/TKDE.2004.46&rfr_id=trans/tk/2009/05/ttk2009050609.htm
http://doi.ieeecomputersociety.org/resolve?ref_id=doi:10.1109/TKDE.2004.46&rfr_id=trans/tk/2009/05/ttk2009050609.htm
http://doi.ieeecomputersociety.org/resolve?ref_id=doi:10.1109/TKDE.2004.46&rfr_id=trans/tk/2009/05/ttk2009050609.htm
http://doi.ieeecomputersociety.org/resolve?ref_id=doi:10.1109/TKDE.2004.46&rfr_id=trans/tk/2009/05/ttk2009050609.htm

