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Abstract 

 

Water wave motion is described by the velocity potential for three dimensional viscous, 

incompressible and irrotational flow. Using dynamic and kinematic free surface conditions 

from Navier-Stokes equations, the nonlinear long wave models are generated by a 

disturbance moving at subcritical, critical and supercritical speed in unbounded shallow 

water. Nonlinearity    and the dispersion    are related as  2 o  , where 

nonlinearity is less than one. Then new forms of two long wave models are established in 

which nonlinear terms are expressed by the derivative of depth averaged velocity potential. 

The implements of the numerical algorithm are studied in the later section. 

 

Keywords: Navier-Stokes equations; Linear and Non linear boundary conditions; 

Dimensional flow. 

 

Introduction 

 

 High speed vessels are used widely as first means of transportation in waterways around 

the world. In restricted water, solitary wave can be generated ahead of the ship bow. First, 

Scott Russel discovered this phenomenon in 1834. Yile Li, Paul D. Sclavounos [1] 

investigated the nonlinear three dimensional upstream solitary long waves generated by a 

disturbance moving at sub critical, critical and supercritical speed in unbounded shallow 

water. They formulated the problem by a new modified generalized Boussinesq equation 

and solved numerically by an implicit finite difference algorithm. Craig and Nicholls [2] 

gave an analysis of travelling or progressive wave solutions to the problem of free surface 

water wave evolving under the influence of gravity in a fluid domain of infinite horizontal 

extent and of depth h , where  h0 . Robert Beck et al. [3] computed by two 
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dimensional solitary waves generated by disturbances moving near the critical speed in 

shallow water by a time stepping procedure combined with a desingularized boundary 

integral method for irrotational flow. Guyenne and Grilli [4,5]  performed to investigate 

the shoaling and breaking of a solitary wave over a sloping ridge with a lateral modulation 

in a three dimensional numerical wave tank. The numerical model solved fully nonlinear 

potential flow equations with a high order boundary element method combined with an 

explicit time integration method expressed in a mixed Eulerian-Lagrangian formulation. In 

a weakly nonlinear model equation for capillary-gravity water waves on a two dimensional 

free surface, Paul A. Milewski [6] showed numerically that there exist localized solitary 

travelling waves for a range of parameters spanning from the long wave limit to the wave-

packet limit. Pelinovsky et al. [7] studied solitary wave where nonlinear shallow water 

theory was applied to obtain the analytical solution for the simplified bottom geometry. 

Wei-Ping Zhong et al. [8] investigated three dimensional spatiotemporal vector solitary 

waves in spherical coordinates and the exact three dimensional nonstationary solutions 

were obtained by the separation of variables and the Hirota bilinear method. W. Craig et 

al. [9] concerned the pairwise nonlinear interaction of solitary waves in the free surface of 

water lying over a horizontal bottom. Bai et al. [11] and Choi et al. [12] studied the 

nonlinear free surface flow produced by a three dimensional ship hull by means of the finite 

element method. Choi et al. [12] also reported the numerical results for a pressure 

distribution traveling at the critical speed in an open domain and found that the crestline of 

the leading soliton fits well with a parabola when the upstream wave develops. Casciola 

and Landrini [13] used an accurate boundary integral approach to simulate the flow and 

carried out a detailed comparison between the fully nonlinear model and generalized 

Boussinesq and forced KdV models. Ertekin et al. [14] pointed out that the blockage 

coefficient is the dominant parameter for the generation of solitons. Ertekin et al. [15] used 

the restricted Geen-Naghdi theory of fluid sheets to perform the three dimensional 

calculation of waves. Analyzing the linear dispersive relation near the critical speed, Katsis 

and Akylas [16] derived a forced nonlinear Kadomtsev-Petviashvili equation. Lee and 

Grimshaw [17] also employed the Kadomtsev-Petviashvili equation and reported various 

characteristics of upstream advancing waves in an open sea.  In a joint numerical and 

experimental study, Lee et al. [18] found that both the generalized Boussinesq and forced 
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KdV models obtain qualitatively similar predictions of the phenomenon of the precursor 

solitons showing a satisfactory agreement with experiments. Michelle, H. Teng and 

Theodore, Y.  Wu [19] examined the consistency and validity of the Boussinesq and KdV 

equations to describe nonlinear water wave generated by submerged disturbances moving 

with near critical speed in a rectangular channel. In this paper, two nonlinear long wave 

models are generated by the applied pressure. 

 

Figure: Wave train 

 Formulation 

 

Under the assumption of incompressible and irrotational flow, the water wave motion is 

described by the velocity potential  tzyx ,,,  and the free surface water elevation

 tyx ,, . Taking fluid velocity v  and body force gF  , where g is the 

gravitational acceleration and ,k̂gg 
 
Navier-Stokes equation becomes 
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  ,,.. 2 


 



  zat

p
grd

t
 and 




 is kinematic 

coefficient of viscosity.                                                                                                     (2) 

Here,      
2

.
2

1
.                                                              (3) 

For irrotational flow, the second term of Eq. (3) vanishes. So 

   2
.

2

1
.   
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..
2

1
..
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  rdrd

 

 

Substituting this value in Eq.(2), we have  

  


 

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g

t
,

2

1 22
                                                                   (4) 

Also the kinematic free surface boundary condition is 



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
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
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
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






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


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




























zat

yyxxtz
                                                               (5) 

And the bottom boundary condition is 

hzat
z





,0                                                                                                             (6) 

Let a pressure distribution advance at the constant speed U  acting on the surface of a layer 

of water with uniform depth h . Steady current is moving in the positive x -direction with 

speedU  (Fig. 1).  

In this reference frame, the velocity potential  tzyx ,,,  can be decomposed as  

    Uxtzyxtzyx  ,,,,,,                                                                                              (7) 

In which  tzyx ,,,  is the disturbance velocity potential representing the flow motion 

induced by the pressure distribution on the free surface. 

The velocity potential  tzyx ,,,  satisfies the Laplace equation 

0 zzyyxx                                                                                                                (8) 
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Substituting Eq. (7) in Eqs. (4), (5), and (6), we have 

   


  zat
p

gU xt ,0.
2

1 2                                                    (9) 

  zatU zxyyxxt                                                                             (10) 

and 

hzatz  0                                                                                                               (11) 

Assuming wave amplitude a , the characteristic wave number k and the characteristic 

horizontal velocity gh where h is the vertical scale .In dimensionless form, the above 

variables are as follows: 















ghhandpgapt
ghk

t
h

g

k

a

zhza
k

y
y

k

x
x

,
1

,

,,,

 

And the dominant parameters are  

kh
h

a
  , and the depth Froude number is 

gh

U
Fh  . 

With these dimensionless variables, Eqs. (8), (9),(10) and (11) become 

  0
1

2


 zzyyxx 


                                                                                                  (12) 

    0
11

2 2

2

2

22


















  zzyyxxxhzyxt pF 








           (13) 

  


   zatF zxhyyxxt 2

1
                                                         (14) 

and 

1,0  zatz                                                                                                            (15) 

For the convenience of our calculation, we drop primes from Eqs. (12) to (15),

  0
1

2
 zzyyxx 


                                                                                                     (16) 

    0
11

2 2

2

2

22


















 zzyyxxxhzyxt pF 








                    (17) 
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  


  zatF zxhyyxxt 2

1
                                                               (18) 

and 

1,0  zatz                                                                                                             (19) 

Expanding the velocity potential  tzyx ,,,  in power series with respect to the vertical 

coordinate about 1z . 

     





0

,,1,,,
n

n

n
tyxztzyx                                                                                   (20) 

Substituting this value in equation (16), we get 

                                (21) 

 In the range  ,1 , z is arbitrary and the coefficients of the power of  1z  must vanish 

to satisfy  Eq.(21), thus we have, 

   ............,.........2,1,0,021 22

2   nnn nn                                                   (22) 

From the recursive relation (22), the velocity potential components with odd subscripts all 

vanish, i.e.,  

..............,.........2,1,0,0............,.................... 1231   mm                         (23) 

Therefore, from Eq. (22), the velocity potential components of even term with 0 , the zero 

order terms are as follows: 

  22

2
2

2
122




 mm
mm




                                                                                             (24) 

From Eq. (20), 

          ........................,,1,,1,,, 4

4

2

2

0  tyxztyxztzyx                          (25) 

Substituting Eq.(24) in Eq.(25), we have 

       6

0

224
4

0

22
2

0 1
24

1
2

,,, 





 ozztzyx                                      (26) 

Depth averaged velocity potential is defined by  

       




 
0

22

2

2 211
n

nn

n

zzyyxx nnz 
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   

   4

0

22
2

0

1

1
6

,,,
1

1
,,












o

dztzyxtyx




 



                                            (27) 

Therefore, 

     42
22

0
6

,,,, 


 o
H

tyxtyx  ,  where 1H                                      (28) 

Substituting Eq. (28) in Eq. (26) and using 1z , the two dimensional velocity 

potential 

 
         6224222

2

42

22
2 1

24

1

12

1

2

1

6
,, 





 oH

H
tyx 































 


                (29) 

For shallow water waves, the nonlinearity   and dispersion   are related as follows 

 2 o                                                                                                                          (30) 

The primary time variable is taken as slow,  then we have 

12 













t
o  

Therefore,    22,  o
t

oo
t

o 
























.                                                    (31) 

Using the above assumption and substituting Eq. (29) into Eq. (17) becomes 

   

 

 

      0
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1
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













 














 

















































 



























 






























 














 





























o
HH

p

H

H

H
F

H

yyyyxxxx

yy

xx

xxhtt

 

where time derivative of  2o  and  2,o is omitted and also 1H , then above 

equation can be written as  
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   yyxxxhyxxht FpF 


  2222

3

1

2
                              (32) 

Similarly, from Eq. (18), we have 

     41.  oF xht                                                                               (33) 

The free surface elevation  can be expressed as in terms of   explicitly. From Eq. (32), 

we have 

   yyxxxhyxxht FpF 


  2222

3

1

2
                              (34) 

Substituting the value of Eq. (34) in Eq. (33) and we have 

     

 4

2222

3

1

2
1.








o

FpFF yyxxxhyxxhtxht






























Neglecting the order higher than  2,o  and time derivative of  o  or  2o , 

   
 

 



 
































 p

F
F

yyyyyyyyxxyxxy

yyxxxxyyxxxxxxyyxyxyxxxh

xht .
2

2

2

2  

                                                                                                                                        

 (35) 

Eqs. (34) and (35) are two forms of nonlinear long wave models in terms of depth averaged 

velocity potential. 

 

Numerical Algorithm 

The implements of the numerical algorithm are described in this section. The unknown 

averaged velocity potential    and the free surface elevation     in the computational 

domain at the  1n th time level satisfy the Eqs. (34) and (35). In this paper, we develop 

an implicit finite difference algorithm to study the Eqs. (34) and (35). The discretized finite 

difference equations can be written as  

            1
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The adopted finite difference scheme (36), (37) is of fully implicit type and is 

unconditionally stable. The principal forcing term of the formation of the nonlinear long 

waves due to the applied pressure distribution p on right hand side of Eq. (34) and the last 

term involving pressure of right hand side of Eq. (35) is  o  and we omit it. 

The finite difference for the derivatives have been taken as 

 

 
 2

1

1

11

1

2

2

1

2

1

1

111

1

1

1

1

1

2

2

43

2

xx

xxxx

j

i

j

i

j

i

j

i

j

ixx

j

i

j

i

j

i

j

i

j

i

j

i

j

i

j

i

j

ix

















































































 

 
 3

1

2

1

1

1

1

1

2

3

3

2

22

xx

j

i

j

i

j

i

j

i

j

i

j

ixxx
































 
  

 
yxyx

j

i

j

i

j

i

j

i

j

i

j

ixy


































4

1

1

1

1

1

1

1

1
2 

  

 
j

i

j

i

j

ixxy
yxxyx 

































2

2

3

  yx

j

i

j

i

j

i

j

i

j

i

j

i






















2

1

2

1

2

111

2

1

2

8

22 
 

 
 2

2

1

2

111

2

1

2

1

2

3

8

22

yxyx

j

i

j

i

j

i

j

i

j

i

j

i

j

i

j

ixyy
































 
  

 

The three time level scheme is used to approximate the time derivative 
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The solution of the nonlinear Eqs. (36) and (37) can be obtained iteratively. The initial 

value of the variables at the next time step is taken as the value at the nth step, 
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Hence, at each iterative step k , Eqs. (36) and (37) become 
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   (38) 

and 
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in which 
kn

ji

,1

,

  and 
kn

ji

,1

,



  are the prediction values of the
ji , and ji ,  after the k -th 

iteration. The superscript k  is used in the terms of the right hand side since both the values 

at the  1k th and k th iterations are used to evaluate the derivatives. 

 

Conclusion 

For viscous incompressible and irrotational flow, water wave motion is described for two 

forms of nonlinear long wave models. Using dynamic and kinematic free surface 

conditions taken from Navier-Stokes equation, the water wave problem is formulated on 

the bottom boundary condition. Expressing velocity potential in power series with respect 

to the vertical coordinates, velocity potential of even order is derived. Using the relations  

 2 o  and 1













t
o , two  forms of long wave models in which nonlinear terms 

are expressed by the derivative of depth averaged velocity potential  . Here, the 

mathematical model and numerical schemes are described and these are applied to simulate 

the nonlinear long waves induced by a pressure distribution in shallow water. In absence 

of viscous term and dispersion term, our model becomes a modified generalized 
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Boussinesq equations which are obtained in paper [1]. Then the implements of the 

numerical algorithm are established. 
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