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Abstract

In the field of Applied Mathematics, physics, and engineering, to explain phenomena occurring
in these fields, models are developed in the form of differential equations. Many of these phenomena
are typically represented as nonlinear differential equations. While there exist a handful of analytical
methods to solve some regular problems, often an analytical solution turns out to be quite difficult
to attain using traditional methods. Therefore the objective is to explore a numerical method or a
semi-analytical method that yields the best approximation. In this paper, we investigate a consis-
tent modification of Laplace decomposition method using Adomian polynomials to solve nonlinear
ordinary and partial differential equations. The method is introduced and to further demonstrate its
effectiveness, it is applied to solve three differential equations where nonlinearity appears in different
forms.

Keywords: Nonlinear PDE, Modified Laplace Decomposition Method.

1 Introduction
The Adomian decomposition method (ADM) is extremely useful in solving complex nonlinear partial
differential equations (NLPDE). As we observe in the fields of physics, acoustics, plasma physics, and
fluid dynamics, many problems in these fields can be modeled by NLPDEs. In the nonlinear case for
ordinary differential equations (ODE) and PDE, ADM can successfully solve equations without breaking
them into little ones. The method avoids linearization, discretization and other unrealistic assumptions.
In solving a general nonlinear PDE or ODE, we first take the Laplace transform of the entire equation.
The nonlinear term is then replaced by a series of Adomian Polynomials. The evaluation of these polyno-
mials is needed, as they contribute to the solutions series components. The crucial aspect of the method
is employment of the “Adomian polynomials” which allows for solution convergence of the nonlinear
part of the equation, without simply linearizing the system. These polynomials mathematically general-
ize to a Maclaurin series about an arbitrary external parameter; which gives this method more flexibility
than direct Taylor series expansion. The modified Laplace decomposition method is much easier to im-
plement as compared to the Adomian decomposition method where huge complexities are involved [4].
This method has also been demonstrated to be effective for the study of boundary layer equations [5].

This technique basically illustrates how the Laplace transform can be used to approximate the so-
lutions of the nonlinear differential equations by manipulating the decomposition method which was
first introduced by Adomian [3]. The method is well suited to physical problems since it does not re-
quire unnecessary linearization, perturbation and other restrictive methods and assumptions which may
change the problem being solved to a great extent. Laplace Adomian decomposition method (LADM)

IJRDO - Journal of Mathematics ISSN: 2455-9210

Volume-5 | Issue-1 | Jan, 2019 12



was first proposed by Suheil A. Khuri, and has been successfully employed to find the solution of dif-
ferential equations. The major advantage of this method is its capability of combining the two powerful
methods to obtain exact solutions for nonlinear equations. However, LADM will generate “noise term”
for inhomogeneous equations [6]. Therefore, M. Hussain developed a modified Laplace decomposition
method (MLDM) which can accelerate the rapid convergence of series solution when compared with
Laplace Adomian decomposition method [2]. Earlier Adomian and Rach introduced the phenomena of
the so-called noise terms in [3]. The “noise terms” are defined as the identical terms with opposite signs
that appear in the components of the series solution of u(x). In [1], it is concluded that if terms in the
component u0 are canceled by terms in the component u1, even though u1 contains further terms, then
the remaining non-canceled terms of u1 provide the exact solution. It is suggested that the noise terms
appear always for inhomogeneous equations. The necessary condition for the“noise terms” to appear in
the components u0 and u1 is that the exact solution must appear as the part of u0 among other terms.
This is true for only a special kind of inhomogeneous equation. It is also evident when you apply the
MLDM, to be mindful where one separates the u terms after applying the Laplace transform for example
rather you choose to leave all the single u terms on one side or separate them on both sides, for this may
affect the result of the numerical solution; this will be demonstrated in example 1. Many authors have
modified the Laplace Decomposition method to solve different nonlinear equations in order to speed up
the convergence of the series solution [6-9]. In this paper, we will approximate a numerical solution
and ODE, and PDE using un and then compare our numerical solution to a known exact solution, for
some cases, the method can give us an exact solution. With the fast convergence capabilities of Adomian
polynomials, we should expect to use only a few polynomials to effectively approximate our numerical
solution. In this work, we will use the modified form of Laplace decomposition method introduced by
Khuri, and adopted by Hussain and Khan [1]. This numerical technique basically illustrates how the
Laplace transform can be employed to approximate the solutions of the NLPDE by manipulating the de-
composition method. Here, modified Laplace decomposition is implemented to nonlinear ordinary and
partial differential equations as well as a nonlinear system of PDEs. The effectiveness and the usefulness
of modified Laplace decomposition method are demonstrated by comparing the graphs of the numerical
solutions to the exact solutions of these two models wherever applicable. For the cases which yield the
exact solution, graphical representation of comparisons between exact and approximating solutions are
omitted.

2 Description of the Method
The objective of this section is to discuss the use of modified Laplace transform method for the nonlin-
ear partial differential equations. For suitability, we deliberate the general form of second order non-
homogeneous nonlinear partial differential equations with initial conditions and boundary conditions as
given below:

Qu(x, t) +Ru(x, t) +Nu(x, t) = h(x, t), u(x, 0) = f(x), ut(x, 0) = g(x),

where Q is a second order differential operator, R is the remaining linear operator, N is a general non-
linear operator, and, h(x, t) is a source term. We are only applying this method to any ODE or PDE to
the order of two. We begin exercising this method by applying the Laplace transform on both sides of
the given equation as shown below:

L[Qu(x, t)] + L[Ru(x, t)] + L[Nu(x, t)] = L[h(x, t)].
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Utilizing the differentiation property of the Laplace transform we get,

s2L[u(x, t)]− sf(x)− g(x) + L[Ru(x, t)] + L[Nu(x, t)] = L[h(x, t)],

L[u(x, t)] = f(x)

s
+
g(x)

s2
+

1

s2
L[h(x, t)]− 1

s2

(
L[Ru(x, t)] + L[Nu(x, t)]

)
Using the superposition principle, the solution can be represented as an infinite series e.g.,

∞∑
n=0

un(x, t).

If we observe the nonlinear operatorNu(x, t) from our equation, we decompose it as a series of Adomian

polynomials as Nu(x, t) =
∞∑
n=0

An, where An are Adomian polynomials of un and it can be determined

by the relation

An =
1

n!

dn

dλn

[
N
∞∑
i=0

λnui

]
λ=0

, n = 0, 1, 2, . . .

Using our previous equations, we can recast

L
[ ∞∑
n=0

un(x, t)
]
=
f(x)

s
+
g(x)

s2
+

1

s2
L[h(x, t)]− 1

s2

(
L[Ru(x, t)]

)
− 1

s2
L
[ ∞∑
n=0

An

]
.

When we compare both sides of the equations in terms of u0, u1, un+1, we have

L[u0(x, t)] =
f(x)

s
+
g(x)

s2
+

1

s2
L[h(x, t)],

L[u1(x, t)] = −
1

s2
L[Ru0(x, t)]−

1

s2
L[A0],

L[u2(x, t)] = −
1

s2
L[Ru1(x, t)]−

1

s2
L[A1].

The preceding terms, depending on how far of the approximation can be determined by the given recur-
sive relation,

L[un+1(x, t)] = −
1

s2
L[Run(x, t)]−

1

s2
L[An], n ≥ 1.

If we apply the inverse Laplace transform to the above equation, we get

un+1(x, t) = −L−1
[ 1
s2
L[Run(x, t)] +

1

s2
L[An]

]
, n ≥ 0.

We assume, un(x, t) = K(x, t) = K0(x, t) + K1(x, t), n < 2. Under this assumption, we propose a
slight variation only in the components u0, u1. The variation we suggest is that only the part K0(x, t) be
assigned to the u0, whereas the remaining part K1(x, t) be combined with the other terms. Incorporating
these proposals, we get a powerful modified recursive algorithm as follows below:

u1(x, t) = K1(x, t)− L−1
[ 1
s2
L[Ru0(x, t)] +

1

s2
L[A0]

]
,

un+1(x, t) = −L−1
[ 1
s2
L[Run(x, t)] +

1

s2
L[An]

]
, n ≥ 1.

The solution through the modified Adomian decomposition method is highly depend upon the choice
of K0(x, t) and K1(x, t). The initial solution is important, as the initial solution always leads to noise
oscillation during the iteration procedure.
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3 Numerical Validation and Discussions
To demonstrate the effectiveness of this method to approximating nonlinear ordinary and partial differ-
ential equations, we shall take two examples in this section and apply the method of MLDM. We will
then compare our results with known exact solutions.

3.1 Example 1
Let’s examine a nonlinear ordinary differential equation with the given initial condition, where the prime
denotes the differentiation with respect to x.

y′ = −y + y2, y(0) = 2.

This particular nonlinear ODE has the exact solution: y(x) =
2

ex − 2
, with a singularity at x = ln 2.

Next, applying the Laplace transform and using the given initial condition, we get,

L[y′] = −L[y] + L[y2]
⇒ sy(s)− y(0) = −y(s) + L[y2]

⇒ y(s) =
2

s+ 1
− 1

s+ 1
L[y2].

Now, applying the inverse Laplace transform to both sides, we get, y(x) = 2e−x − L−1
[

1
s+1
L
[
y2
]]

.
In order to find the complete solution, we need to decompose the nonlinear part of the equation as an
infinite sum as required by the superposition principle:

y =
∞∑
n=0

yn(x).

We then represent the nonlinear term as a series of Adomian polynomials as given: y2 =
∞∑
n=0

An(y).

Applying this substitution in our equation we get:
∞∑
n=0

yn(x) = 2e−x − L−1
[ 1

s+ 1
L
[ ∞∑
n=0

An(y)
]]

.

The recursive relation is as follows:

y0 = 2e−x; y1 = −L−1
[ 1

s+ 1
L
[ ∞∑
n=0

A0(y)
]]
yn+1 = −L−1

[ 1

s+ 1
L
[ ∞∑
n=0

An(y)
]]
, n ≥ 1.

In order to approximate the solution using only two terms, namely y0, and y1, we simplify our equation
as follows:

y1=L−1
[−1
s+1
L
[ ∞∑
n=0

A0(y)
]]
=L−1

[ −1
s+1
L
[
y20
]]
=L−1

[ −1
s+1
L
[
4e−2x

]]
=L−1

[ −4
(s+1)(s+2)

]
=4e−2x(1−ex).

In view of above modified recursive relation, combining our result obtained from y0 and y1, we achieve
an analytical solution after simplifying: y(x) = 2e−2x(2− ex).
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We can use the expressions for y0 and y1, to approximate the next iteration y2:

y0 = 2e−x,

y1 = −L−1
[ 1

s+ 1
L
[ ∞∑
n=0

A0(y)
]]
,

y2 = −L−1
[ 1

s+ 1
L
[ ∞∑
n=0

A1(y)
]]
,

yn+1 = −L−1
[ 1

s+ 1
L
[ ∞∑
n=0

An(y)
]]
, n ≥ 1.
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Figure 1: Figure presents the comparison between the exact solution (red line), the approximated solution
with the 1st iteration (green line), and the approximated solution with the 2nd iteration (blue line) for the
problem in example 1.

Further continuing the calculations, we obtain,

y2 = −L−1
[ 1

s+ 1
L
[
2(2e−2x)

(
4[e−x − e−2x]

)]]
= −L−1

[ 1

s+ 1
L
[
16
(
e−2x − e−3x

)]]
= −16L−1

[ 1

(s+ 1)(s+ 2)
− 1

(s+ 1)(s+ 3)

]
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= −16L−1
[
− 1

s+ 2
+

1

s+ 3

]
= −16

(
−e−2x + e−3x

)
.

The new solution y(x) can be obtained by adding the expression of y2, with the expressions for y0 and
y1 as follows: y(x) = −2e−x − 20e−2x − 16e−3x.

3.2 Example 2
Next, we would like to apply MLDM to the NLPDE with boundary conditions given below:

PDE: uxx = −u2 + u2y, BC: u(0, y) = 0, ux(0, y) = ey.

By applying the MLDM to the nonlinear PDE, we get:

L
[
uxx

]
= L

[
−u2 + u2y

]
⇒s2u(s, y)− su(0, y)− ux(0, y) = L

[
−u2 + u2y

]
⇒u(s, y) = ey

s2
− 1

s2
L
[
u2 − u2y

]
.

Applying the Laplace inverse on both sides, we get, u(x, y) = xey − L−1
[ 1
s2
L
[
uu − uyuy

]]
. By

expressing u(x, y) as an infinite series, the above expression for u(x, y) can be recast as follows:

∞∑
n=0

un(x, y) = xey − L−1
[ 1
s2
L
( ∞∑
n=0

[
An −Bn

])]
.

By assuming u0(x, y) = xey, we can proceed to find u1 next,

u1(x, y) = −L−1
[ 1
s2
L
( ∞∑
n=0

[
u20 − u20y

])]
= −L−1

[ 1
s2
L
( ∞∑
n=0

[
x2e2y − x2e2y

])]
= 0,

which subsequently renders rest of the u’s to be 0. Thus, the final solution is u(x, y) = xey. As stated
in the introduction, a special case of nonlinear differential equation using MLDM will usually produce
noise terms if the exact solution is equal to the first iteration u0. These noise terms are canceled and the
remaining terms do not contribute to the solution.

3.3 Example 3
In the next example, MLDM is applied to a coupled system of nonlinear PDE with initial conditions:

PDE: ut − vxwy = 1; vt − wxuy = 5; wt − uxvy = 5,

IC: u(x, y, 0) = x+ 2y; v(x, y, 0) = x− 2y; w(x, y, 0) = −x+ 2y.

Applying the Laplace transform on each PDE, subsequently simplifying the expressions after applying
the initial conditions, we arrive at:

L[ut] = L[1]+L[vxwy]⇒ su(x, y, s)−u(x, y, 0) = 1

s
+L[vxwy]⇒ u(x, y, s) =

x+2y

s
+

1

s2
+
1

s
L[vxwy]

6
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L[vt] = L[5]+L[wxuy]⇒ sv(x, y, s)−v(x, y, 0) = 5

s
+L[wxuy]⇒ v(x, y, s) =

x−2y
s

+
5

s2
+
1

s
L[wxuy]

L[wt] = L[5]+L[uxvy]⇒ sw(x, y, s)−w(x, y, 0) = 5

s
+L[uxvy]⇒ w(x, y, s) =

−x+2y

s
+

5

s2
+
1

s
L[uxvy].

Applying the inverse Laplace transform on both sides of each equation of the system, we obtain:

u(x, y, t)=x+2y+t+L−1
[1
s
L[vxwy]

]
,

v(x, y, t)=x−2y+5t+ L−1
[1
s
L[wxuy]

]
,

w(x, y, t)=−x+2y+5t+ L−1
[1
s
L[uxvy]

]
.

We represent each equation of the system as a series with An, Bn, and Cn representing Adomian poly-
nomials respectively,

∞∑
n=0

un(x, y, t) = x+ 2y + t+ L−1
[1
s
L
( ∞∑
n=0

An(v, w)
)]
,

∞∑
n=0

vn(x, y, t) = x− 2y + 5t+ L−1
[1
s
L
( ∞∑
n=0

Bn(w, u)
)]
,

∞∑
n=0

wn(x, y, t) = −x+ 2y + 5t+ L−1
[1
s
L
( ∞∑
n=0

Cn(u, v)
)]
.

The recursive relation for the system follows as below:

u0(x, y, t) = x+2y; u1(x, y, t) = t+L−1
[1
s
L
( ∞∑
n=0

A0(v, w)
)]

; un+1(x, y, t) = L−1
[1
s
L
( ∞∑
n=0

An(v, w)
)]
,

v0(x, y, t) = x−2y; v1(x, y, t) = 5t+L−1
[1
s
L
( ∞∑
n=0

B0(w, u)
)]

; vn+1(x, y, t) = L−1
[1
s
L
( ∞∑
n=0

Bn(w, u)
)]
,

w0(x, y, t) = −x+2y; w1(x, y, t) = 5t+L−1
[1
s
L
( ∞∑
n=0

C0(u, v)
)]

; wn+1(x, y, t) = L−1
[1
s
L
( ∞∑
n=0

Cn(u, v)
)]
.

By carrying out some simple algebra, we recover the solution for u, v, and w.

u1(x, y, t) = t+ L−11
s
L[v0xw0x]⇒ t+ L−11

s
L[2]⇒ t+ L−1

[ 2
s2
]
⇒ t+ 2t⇒ 3t,

which consequently yields the complete solution for u(x, y, t) = u0(x, y, t) + u1(x, y, t) = x+ 2y + 3t.
Similarly, we can obtain the solutions for v and w as well:

v(x, y, t) = x− 2y + 3t, and w(x, y, t) = −x+ 2y + 3t.

4 Conclusion
In this paper, we demonstrated the efficiency of the modified Laplace decomposition method as well
as the special cases involved while analyzing its application. We solved three nonlinear differential
equations with initial conditions. In the first example, after solving the equation using the MLDM,
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we compared first two iterations graphically and demonstrated how different these interpolations were
compared with the exact solution. In example two, it was validated with proper justification that certain
terms (also known as noise terms) which originate while seeking the solutions, cancel each other out to
yield the exact solution. In example three, the method was applied successfully to a system of nonlinear
partial differential equations to attain the exact solution. This technique has proved to be a powerful tool
while tackling these nonlinear differential equations which model a multitude of real-world phenomena
observed in the field of applied physics, engineering, and other sciences.
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