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ABSTRACT 

Mathematical models for the comparative study of blood flow through stenosed artery with constant viscosity and 

variable viscosity dependent on red blood cells concentration (hematocrit) taking into consideration the externally 

applied magnetic field and slip velocity is presented. The laminar, incompressible, fully developed, non-

Newtonian (third grade) flow of blood in an artery having stenosis is numerically studied. Effect of variable 

viscosity, slip velocity and magnetic field in the blood flow with constant and variable viscosities are discussed of 

analytically and graphically. All the flow characteristics are established to be effected due to the combined effects 

of the variable viscosity, magnetic field and slip velocity. Analytical expression for both blood flow models with 

constant and variable viscosities for the velocity profiles, volumetric flow rate, shear stress and resistance to flow 

are derived. The study provides an insight into the effects of variable viscosity, magnetic and slip velocity on the 

velocity profiles, volumetric flow rate, shear stress and resistance to flow on blood flow models with constant and 

variable viscosities.  

Keywords: Constant Viscosity, Variable Viscosity, Stenosed Artery, Slip Velocity, Magnetic Field, third grade, 

Volumetric flow rate, hematocrit, Shear stress, resistance to flow 

1.0 INTRODUCTION 

Atherosclerosis which is one of the cardiovascular diseases have been responsible for many deaths in both 

developed and developing countries. Blood which is composed of red blood cells, white blood cells, plasma, 

platelet is considered to be one of the most important multi-component mixtures. One of the causes of circulating 

disorders which can in effect lead to occluding the blood supply is the presence of stenosis in the cardiovascular 

system. The occlusion of normal blood supply can cause a serious consequence such as myocardial infarction and 

cerebral stroke.  

Several researchers had carried out investigation and explored the behavior of blood flow with constant viscosity 

under the influence of magnetic field or slip velocity or both. Magnetic field influence on the pulsatile flow of 

biofluid was studied by Alimohamadi et al [1], Das and Sahs [2], used finite Hankel and Laplace transforms to 

obtained analytical solution to pulsatile flow of blood through a stenosed porous medium with periodic body 

acceleration and under the influence of magnetic fields. The Pulsatile flow of blood through narrow arteries with 

axisymmetric mild stenosis and also with the effect of magnetic field was investigated by Sankar and Lee [3], Bali 

and Awasthi [4] examined the effect of externally imposed uniform magnetic field on the nonlinear casson flow 

field on the multi stenosed artery with core region. They modelled blood as a casson fluid by properly accounting 

for yield stress of blood in small blood vessel. Singh and Singh [5] studied the effect of an externally applied 

uniform magnetic field on the axially non-symmetric but radially symmetric atherosclerotic artery with core 

region. Haleh, et al [6] considered the non- Newtonian blood flow in the stenosed artery in the presence of 

magnetic field. They used magnetic field to destroy the created vortex after the stenosis region corresponds to 

non-uniforming of flow in this region. 

All the aforementioned researchers did not consider the slip effect. In line with this, Amit and Shrivaster [7] study 

the flow of blood in a multiple stenosed artery employing velocity slip conditions under the externally applied 

transverse magnetic field. They modelled blood as Herschel Bulkley fluid to represent the non-Newtonian 

character of the blood in small blood vessel. Raja and Varshney [8] developed a mathematical model to study the 

MHD oscillatory blood flow through stenosed artery under the effect of slip velocity. They assumed blood to be 

Newtonian. A theoretical investigation concerning the influence of externally imposed arterial segment by taking 

into account the slip velocity at the wall of the artery has been investigated by Singh et al [9]. They used 

perturbation to solve the couple implicit system of nonlinear differential equations that govern the flow of blood. 

Their results show that the flow is appreciably influenced by slip velocity in the presence of the periodic body 

acceleration. Other researchers that considered slip velocity in their studies includes: Arun [10], Verma et al [11], 

Reddy et al [12], Bhatnagar and Strivastava [13], Guar and Gupta [14]. 

The above researchers considered only constant viscosity in their studies. Some of the researchers that considered 

variable viscosity in their studies are: Sanjeev and Chandrashekhar [15], Chitra and Karthikeyan [16], Singh and 

Rathee [17], Jagdish and Rajbala [18]. 
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In this study, mathematical models are proposed to describe the blood flow through stenosed artery with constant 

viscosity and variable viscosity dependent on red blood concentration. Incorporated into the models are the 

externally applied magnetic field and slip velocity.   

2.0 Mathematical Models 

The momentum equations describing the steady fluid flow models with constant viscosity and variable viscosity 

as obtained by Mohammed [19] and Jimoh [20] are respectively given as  
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As a result of the constricted artery in the stenotic region as shown in figure 1, one employed slip velocity so that 

the corresponding slip conditions to (2.1) and (2.2) are respectively given as  

w = ws      at     𝑟 = 𝑅(𝑧) 

𝜕𝑤
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To non-dimensionalize equations (2.1), (2.2), (2.3) and (2.4), we introduce the following parameters and variables 
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When equation (2.4) is substituted into (2.1) and (2.2), after simplifying one obtain respectively 
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as the dimensionless momentum equation for the blood flow with constant viscosity. 
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as the dimensionless momentum equation for the blood flow with variable viscosity. 

 The corresponding dimensionless slip conditions to (2.5) and (2.6) can be simplified respectively as 
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 Figure1.Geometry of the stenosis  

and has been described by Young [21] and Biswas [22] 

𝑅(𝑧)

𝑅0
= 1 −

ƹ

2𝑅0
[1 +

𝑐𝑜𝑠𝜋𝑧

𝐿
] ,  for |𝑧|<L       

   𝑅0,    for          |𝑧|˃L  

3.0 Methods of Solution 

To obtain solution to (2.5) using Galerkin weighted residual method, one assumes a trial function of the form 

�̅�(𝑦) = 𝑎0 + 𝑎1𝑦 + 𝑎2𝑦2         (3.1) 

Subjecting (3.1) to the slip conditions (2.7) and after simplification yields 
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𝑅𝑏2)       (3.2) 

 Using the transformation �̅� =
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𝑅𝑏
 in (3.2), after simplifying and dropping the bar one obtain 

𝑤(𝑟) = 𝑉0𝑟2 + 𝑎0(1 − 𝑟2) + 𝑎2𝑟2(1 − 𝑟2)      (3.3) 

The residue for equation (2.5) can be written as 
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Substituting (3.3) into (3.4) and simplifying in full to obtain 
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By differentiating (3.3) with respect to 𝑎0 𝑎𝑛𝑑 𝑎2, one obtain (1 − 𝑟2) and 𝑟2(1 − 𝑟2)     respectively   as the 

weight functions.        

(2.9) 
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By taking the orthogonality of the residue 𝑅1(𝑎0, 𝑎2, 𝑟)   with respect to the weight functions (1 − 𝑟2) and 

𝑟2(1 − 𝑟2) one obtain the following systems of nonlinear equation;             
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By substituting the appropriate values of the parameters 𝛺, 𝑉0, 𝑀, 𝐺, 𝑎𝑛𝑑 𝑅𝐸 into (3.6) and (3.7) and solving the 

system of nonlinear equations, one obtain the values for 𝑎0 𝑎𝑛𝑑 𝑎2which when substituted into (3.3), the velocity 

profiles were obtained which are shown in table 1.  

Similarly, to obtain solution to equation (2.6) following the same procedure as indicated above, one can write 

residue for (2.6) as 
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The following systems of nonlinear equation were obtained by following the same step just like in the previous 

section 

14784𝑉0𝑁
3 𝑅𝐸𝑁𝛺𝑁 − 44352𝑅𝐸𝑁𝑉0𝑁

2 𝛺𝑁𝑎0 − 12672𝑅𝐸𝑁𝑉0𝑁
2 𝛺𝑁𝑎2 + 44352𝑅𝐸𝑁𝑉0𝑁𝛺𝑁𝑎0

2 +
25344𝑅𝐸𝑁𝑉0𝑁𝛺𝑁𝑎0𝑎2 + 14784𝑅𝐸𝑁𝑉0𝑁𝛺𝑁𝑎2

2 − 14784𝑅𝐸𝑁𝛺𝑁𝑎0
3 − 12672𝑅𝐸𝑁𝛺𝑁𝑎0

2𝑎2 −
1478𝑅𝐸𝑁𝛺𝑁𝑎0𝑎2

2 − 2560𝑅𝐸𝑁𝛺𝑁𝑎2
3 − 231𝑀𝑁𝑅𝐸𝑁𝑉0𝑁 − 924𝑀𝑁𝑅𝐸𝑁𝑎0 − 132𝑀𝑁𝑅𝐸𝑁𝑎2 + 1155𝐺𝑁𝑅𝐸𝑁 +

3696𝑁𝑉0𝑁 − 3696𝑁𝑎0 + 1584𝑁𝑎2 + 4620𝑉0𝑁 − 4620𝑎0 + 924𝑎2 = 0     

       (3.9) 

82368𝑅𝐸𝑁𝑉0𝑁
3 𝛺𝑁 − 247104𝑅𝐸𝑁𝑉0𝑁

2 𝛺𝑁𝑎0 − 164736𝑅𝐸𝑁𝑉0𝑁
2 𝛺𝑁𝑎2 + 247104𝑅𝐸𝑁𝑉0𝑁𝛺𝑁𝑎0

2 +
32472𝑅𝐸𝑁𝑉0𝑁𝛺𝑁𝑎0𝑎2 + 122304𝑅𝐸𝑁𝑉0𝑁𝛺𝑁𝑎2

2 − 82364𝑅𝐸𝑁𝛺𝑁𝑎0
3 − 164736𝑅𝐸𝑁𝛺𝑁𝑎0

2𝑎2 −
122304𝑅𝐸𝑁𝛺𝑁𝑎0𝑎2

2 − 33792𝑅𝐸𝑁𝛺𝑁𝑎2
3 − 1287𝑀𝑁𝑅𝐸𝑁𝑉0𝑁 − 1716𝑀𝑁𝑅𝐸𝑁𝑎0 − 572𝑀𝑁𝑅𝐸𝑁𝑎2 +

3003𝐺𝑁𝑅𝐸𝑁 + 6864𝑁𝑉0𝑁 − 6864𝑁𝑎0 − 2288𝑁𝑎2 + 12012𝑉0𝑁 − 12012𝑎0 − 8580𝑎2 = 0  

 (3.10) 

Substituting the appropriate values of the parameters 𝑅𝐸𝑁, 𝑉0𝑁, 𝛺𝑁, 𝑀𝑁, and 𝐺𝑁 into (3.9) and (3.10) and solving 

the system of nonlinear equations, one obtain the values for 𝑎0 𝑎𝑛𝑑 𝑎2 which are shown in table 2.  

Volume Flow Rate 

The volume flow rate denoted by Q can be simplified as 

𝑄 = 12 [3𝑉0(𝑅(𝑧))
4

+ 𝑎0 (6(𝑅(𝑧))
2

− 3(𝑅(𝑧))
4

) + 𝑎2 (3(𝑅(𝑧))
4

− 2(𝑅(𝑧))
6

)]    

         (3.11 

Shear Stress 

The shear stress denoted by 𝜏𝑆 can be simplified as 

𝜏𝑠 = 2𝜇𝑅(𝑍) (𝑉0 − 𝑎0 + 𝑎2 − 2𝑅((𝑍))
2

𝑎2) + 16𝑅(𝑍)𝛽3(𝑉0 − 𝑎0 + 𝑎2 − 2(𝑅(𝑍))2𝑎2)    

        (3.12) 

Resistance to Flow 

The resistance to flow can be denoted as ψ can be simplified as 

ψ =
−

𝜕�̂�

𝜕𝑧

12[3𝑉0(𝑅(𝑧))
4

+𝑎0(6(𝑅(𝑧))
2

−3(𝑅(𝑧))
4

)+𝑎2(3(𝑅(𝑧))
4

−2(𝑅(𝑧))
6

)]
     (3.13) 
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Table 1: Values of the parameters used in the numerical results and the corresponding 

Velocity profile for the blood flow with Constant Viscosity. 
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2a 

 

1.5 

2.0 

2.5 

0.25 

0.25 

0.25 

0.9 

0.9 

0.9 

10 

10 

10 

0.35 

0.35 

0.35 

0.5746 – 0.3755r2 – 0.0041r2(1-r2) 

0.7056 – 0.5056r2 – 0.0473r2(1-r2) 

0.7489 – 0.5489r2 – 0.0670r2(1-r2) 

 

3a 

 

1.5 

1.5 

1.5 

0.25 

0.25 

0.25 

0.9 

0.9 

0.9 

10 

10 

10 

0.35 

0.65 

0.95 

0.3188 – 0.1188r2 – 0.0169r2(1-r2) 

0.2850 – 0.0850r2 – 0.0009r2(1-r2) 

0.2517 – 0.0517r2 – 0.0058r2(1-r2) 

 

4a 

1.5 

1.5 

1.5 

0.25 

0.35 

0.45 

0.9 

0.9 

0.9 

10 

10 

10 

0.35 

0.35 

0.35 

0.5769 – 0.3269r2 – 0.1192r2(1-r2) 

0.6744 – 0.3244r2 – 0.1179r2(1-r2) 

0.7718 – 0.3218r2 – 0.1167r2(1-r2) 

 

5a 

 

1.5 

1.5 

1.5 

0.25 

0.25 

0.25 

0.9 

0.9 

0.9 

10 

20 

30 

0.35 

0.35 

0.35 

0.3385 – 0.1385r2 – 0.0483r2(1- r2) 0.3539 – 

0.1539r2 – 0.0526r2(1-r2) 

0.3823 – 0.1823r2 – 0.0558r2(1-r2) 

 

6a 

 

1.5 

1.5 

1.5 

0.25 

0.25 

0.25 

0.3 

0.6 

0.9 

10 

10 

10 

0.35 

0.35 

0.35 

0.2669 – 0.0669r2 – 0.0028r2(1-r2) 

0.3118 – 0.1118r2 – 0.0179r2(1-r2) 

0.3338 – 0.1375r2 – 0.0333r2(1-r2) 

 

 

Table 2: Values of the parameters used in the numerical results and the corresponding 

Velocity profile for the blood flow with Variable Viscosity. 

Figs 𝐺𝑁 𝑉0𝑁 𝑅𝐸𝑁 𝛺𝑁 𝑀𝑁 N w(r) 

 

2b 

 

1.5 

2.0 

2.5 

0.25 

0.25 

0.25 

0.9 

0.9 

0.9 

10 

10 

10 

0.35 

0.35 

0.35 

2 

2 

2 

0.2582 – 0.0582r2 – 0.0038r2(1-r2) 

0.3065 – 0.1065r2 – 0.0069r2(1-r2) 

0.3438 – 0.1438r2 – 0.0210 r2(1-r2) 

 

3b 

 

1.5 

1.5 

1.5 

0.25 

0.25 

0.25 

0.9 

0.9 

0.9 

10 

10 

10 

0.35 

0.65 

0.95 

2 

2 

2 

0.3342 – 0.1342r2 – 0.0149r2(1-r2) 

0.3282 – 0.1282r2 – 0.0120r2(1-r2) 

0.3221 – 0.1221r2 – 0.0091r2(1-r2) 

 

4b 

 

1.5 

1.5 

1.5 

0.25 

0.35 

0.45 

0.9 

0.9 

0.9 

10 

10 

10 

0.35 

0.35 

0.35 

2 

2 

2 

0.3996 – 0.1496r2 – 0.0289r2(1-r2) 

0.4919 – 0.1419r2 – 0.0253r2(1-r2) 

0.5838 – 0.1338r2 – 0.0216r2(1-r2) 

 

5b 

 

1.5 

1.5 

1.5 

0.25 

0.25 

0.25 

0.9 

0.9 

0.9 

10 

20 

30 

0.35 

0.35 

0.35 

2 

2 

2 

0.3281 – 0.1281r2 – 0.0128r2(1-r2) 

0.3148 – 0.1148r2 – 0.0191r2(1-r2) 

0.3066 – 0.1066r2 – 0.0215r2(1-r2) 

 

6b  

 

1.5 

1.5 

1.5 

0.25 

0.25 

0.25 

0.3 

0.6 

0.9 

10 

10 

10 

0.35 

0.35 

0.35 

2 

2 

2 

0.2406 – 0.0406r2 – 0.0058r2(1-r2) 

0.2746 – 0.0746r2 – 0.0047r2(1-r2) 

0.2998 – 0.0998r2 – 0.0036r2(1-r2) 
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Figure 2a: Variation of Velocity Profile of Blood along radial distance for different values of the Pressure 

Gradient for the blood flow with constant viscosity. 

 

Figure 2b: Variation of Velocity Profile of Blood along radial distance for different values of the Pressure 

Gradient for the blood flow with Variable Viscosity. 
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Figure3a: Variation of Velocity Profile of Blood Flow for various values of Magnitude Field Parameter in 

the radial direction. 

 

Figure 3b: Variation of Velocity Profile of Blood along radial distance for different values of the Magnetic  

 Field Parameter for the blood flow with Variable Viscosity. 
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Figure 4a: Variation of Velocity Profile of Blood along radial distance for different values of the Slip 

Velocity for the blood flow with Constant Viscosity. 

 

 

Figure 4b: Variation of Velocity Profile of Blood along radial distance for different values of the Slip 

Velocity for the blood flow with Variable Viscosity. 
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Figure 5a: Variation of Velocity Profile of Blood along radial distance for different values of the Shear 

Thinning for the blood flow with Constant Viscosity. 

 

 

Figure 5b: Variation of Velocity Profile of Blood along radial distance for different values of the Shear 

Thinning for the blood flow with Variable Viscosity. 
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Figure 6a: Variation of Velocity Profile of Blood along radial distance for different values of the Reynold  

number for the blood flow with Constant Viscosity. 

 

 

Figure 6b: Variation of Velocity Profile of Blood along radial distance for different values of the Reynold  

number for the blood flow with Variable Viscosity. 
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Figure 7a: Variation of Volumetric Flow Rate of Blood Flow with constant viscosity for the increasing 

values of the Slip Velocity in the entire arterial region along the axial direction. 

 

 

Figure 7b: Variation of Volumetric Flow Rate of Blood Flow with Variable Viscosity for the increasing 

values of the Slip Velocity in the entire arterial region along the axial direction. 
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Figure 8a: Variation of Shear Stress of Blood Flow with Constant Viscosity for the increasing values of the  

Slip Velocity in the entire arterial region along the axial direction. 

 

 

Figure 8b: Variation of Shear Stress of Blood Flow with Variable Viscosity for the increasing values of the  

Slip Velocity in the entire arterial region along the axial direction. 
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Figure 9a: Variation of Resistance to Blood Flow with Constant Viscosity for the increasing values of the 

Slip Velocity in the entire arterial region along the axial direction. 

 

 

Figure 9b: Variation of Resistance to Blood Flow with Variable Viscosity for the increasing values of the 

Slip Velocity in the entire arterial region along the axial direction. 
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Figure 10a: Variation of Volumetric Flow Rate of Blood Flow with Constant Viscosity for the increasing  

 values of the Magnetic Field Parameter in the entire arterial region along the axial direction. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 10b: Variation of Volumetric Flow Rate of Blood Flow with Variable Viscosity for the increasing  

 values of the Magnetic Field Parameter in the entire arterial region along the axial direction. 
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Figure 11a: Variation of Shear Stress of Blood Flow with Constant Viscosity increasing values of the 

Magnetic Field Parameter in the entire arterial region along the axial direction. 

 

 

 

Figure 11b: Variation of Shear Stress of Blood Flow with Variable Viscosity increasing values of the 

Magnetic Field Parameter in the entire arterial region along the axial direction. 
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Figure 12a: Variation of Resistance to Blood Flow with Constant Viscosity increasing values of the 

Magnetic Field Parameter in the entire arterial region along the axial direction. 

 

 

Figure 12b: Variation of Resistance to Blood Flow with Variable Viscosity increasing values of the Magnetic  

Field Parameter in the entire arterial region along the axial direction. 
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Figure 13: Comparison of the Velocity Profiles of the Steady Blood Flow Model with Constant and Variable  

Viscosities in the Radial Direction. 

4.0 Discussion of Results 

To illustrate the blood flow behavior with constant viscosity and variable viscosity dependent on red blood cells 

concentration (hematocrit), the results are shown graphically with the help of maple computer software. The 

effects of various parameters on flow velocity, volumetric flow rate, shear stress and resistance to flow for the 

blood flow models with constant and variable viscosities are calculated and shown graphically above. 

 Figures 2a and 2b show the variation of velocity profiles of blood flow models with constant and with variable 

viscosities for different values of the pressure gradient. It is reveals from the figures that pressure gradient 

increases with flow velocity but the effect of pressure gradient on the flow of blood with variable viscosity is more 

noticeable than constant viscosity. Figures 3a and 3b illustrate the effects of magnetic field on the flow velocity 

for the blood flow with constant and variable viscosities. It is found that magnetic field gradually decreases the 

flow velocity in both cases but the effect of the magnetic field is more noticeable on the blood flow model with 

constant viscosity than variable viscosity. Figures 4a and 4b reveal the variation of flow velocity along the radial 

distance as slip velocity increases for the blood flow models with constant and variable viscosities. The figures 

show that increase in slip velocity significantly lead to an increase in velocity profile. Figures 5a, 5b, 6a, and 6b 

shows the variation of velocity profiles for different values of shear thinning and Reynold number for the blood 

flow models with constant and variable viscosities. The figures reveal that, shear thinning and Reynold number 

increases with velocity profiles. 

Also, figures 7a, 7b, 8a, 8b, 9a and 9b shows the variation of volumetric flow rate, shear stress and flow resistance 

for different values of the slip velocity for the blood flow models with constant and variable viscosities. It is 

reveals from those figures that, slip velocity increases with volumetric flow rate and shear stress but decrease the 

resistance to flow. It is also reveal that smaller value of slip velocity is required for more noticeable effects on the 

volumetric flow rate and shear stress for the flow model with variable viscosity compare to that of variable   

Viscosity. In the same vein, small value of the slip velocity is required for more noticeable effect on the resistance 

to flow for the blood flow model with constant viscosity compare to that of with variable viscosity. 
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Figures 10a, 10b, 11a, 11b, 12a and 12b shows the variation of the volume flow rate, shear stress and resistance 

to blood flow along the axial direction for different values of the magnetic field for the blood flow models with 

constant and variable viscosities. The figures revealed that increase in magnetic field lead to increase in resistance 

to flow and decreases the volume flow rate and shear stress. The variation of the shear stress is in the positive 

direction for the blood flow model with constant viscosity while that of the variable viscosity is in the negative 

direction as indicated in figures 11a and 11b. 

Finally, for the fixed values of all the parameters, the velocity profile of the blood flow with constant viscosity is 

higher than with variable viscosity as shown in figure 13.  

 5 Conclusion 

Present study brings out many interesting results on rheological properties of blood flow through stenosed artery 

for the models with constant viscosity and variable viscosity of blood dependent on red blood cells concentration 

(hematocrit) considering blood as third fluid model. Since high blood viscosity is very dangerous for the 

cardiovascular disorders, the present models may be used as a tool for reducing the blood viscosity by using slip 

velocity at the constricted artery. Since the externally applied magnetic field gradually reduces the flow velocity 

and flow rate, the present study is useful for the reduction of blood flow during surgery and magnetic resonance 

imaging. In order to control blood pressure and blood viscosity, it is suggested to vary viscosity of blood with red 

blood cell concentration (hematocrit).  
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Nomenclatures 

w - Fluid velocity      �̅� - Dimensionless fluid velocity 

t - Time component     𝑡̅ - Dimensionless time component 

r - Radial distance     y - Dimensionless radial distance  

z - Axial distance     𝑤𝑠 - Slip velocity 

𝑉0 - Dimensionless Slip velocity   𝜓 - Resistance to flow  

𝜐 - Dynamic viscosity    𝑅0 - Radius of the normal artery 

R(z) - Radius of the artery in a stenotic region 𝛽0 - Magnetic Field Strength 

Q - Volumetric flow rate    𝜏𝑠 - Wall Shear Stress 

Ƹ - Maximum height of the stenosis   L - Length of the stenosis 

𝑅𝐸 - Reynold number for the flow with constant viscosity 

𝑅𝐸𝑁 – Reynold number for the flow with variable viscosity 

 𝑀- Magnetic field parameter for the flow with constant viscosity 

 𝑀𝑁 - Magnetic field parameter for the flow with variable viscosity 

 𝑉0 - Slip velocity for the flow with constant viscosity 

 𝑉𝑁 – Slip velocity for the flow with variable viscosity 

 𝐺- Pressure gradient for the flow with constant viscosity 

  𝐺𝑁 – Pressure gradient for the flow with variable viscosity 

 Ω- Shear thinning for the flow with constant viscosity 

  Ω𝑁 - Shear thinning for the flow with variable viscosity 

𝑠𝑓- Steady flow model with constant viscosity  

 𝑁𝑠𝑓- Steady flow model with variable viscosity  
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