

ON TENSORS AND THE VOLUME ELEMENT OF L_1^n

Serpil Karagöz^{1*}

*Department of Mathematics, Faculty of Arts and Science, Bolu Abant İzzet Baysal University, 14030, Bolu, Türkiye, October 04,2024

Corresponding Author:

Abstract:

In this work, we give the relationship between the alterne tensor $det \in J^n(L_1^n)$ which is the volume element of L_1^n and the symmetric tensor inner product on L_1^n .

1. INTRODUCTION

An important idea underlying general relativity is that space-time which may be described as a curved four-dimensional mathematical structure called a pseudo-Riemannian manifold. A Lorentzian manifold L_1^n is a special case of a pseudo-Riemannian manifold in which the signature of metric is (1,n-1). We need to study on vectors, one-forms and tensors to explain cross product on vectors in L_1^n .

Vectors, One-Forms and Tensors

A vector is a quantity with a magnitude and a direction. This primitive concept, familiar from undergraduate physics and mathematics, applies equally in general relativity. An example of a vector is $d\vec{x}$, the difference vector between two infinitesimally close points of space-time .Vectors form a linear algebra. This is valid for vectors in a curved fourdimensional space-time as they are vectors in three-dimensional Euclidean space. A one-form is defined as a linear scalar function of a vector. That is, a one-form takes a vector as input and outputs a scalar. For the one-form $\tilde{P}, \tilde{P}(\vec{V})$ is also called the scalar product and denoted $\tilde{P}(\vec{V}) = < \tilde{P}, \vec{V} >$. The one-form is a linear function. We may associate a one-form with a space-time point, resulting in a one-form field $\tilde{P} = \tilde{P}_X$.

 \tilde{P}_X is a one-form at point x while $\tilde{P}(\vec{V})$ is a scalar, defined implicitly at point x. One-forms obey their own linear algebra distinct from that of vectors. Vectors and one-forms are linear operators on each other, producing scalars. It is often helpful to consider a vector as being a linear scalar function of a one-form. The vector space of one-forms is called the dual vector (or cotangent) space to distinguish it from the linear space of vectors (tangent space). [1]

Definition1.1 If *V* is a vector space over \mathbb{R} we will denote the k-fold product $V \times ... \times V$ by V^k . A multilinear function $T: V^k \to \mathbb{R}$ is called a k-tensor on *V* and the set of all k-tensors, denoted $J^k(V)$, becomes a vector space over \mathbb{R} . **Definition1.2** If for $S, T \in J^k(V)$ and $a \in \mathbb{R}$ we define

 $(S + T)(v_1, ..., v_k) = S(v_1, ..., v_k) + T(v_1, ..., v_k)$ (aS)(v_1, ..., v_k) = aS(v_1, ..., v_k)

If $S \in J^k(V)$ and $T \in J^l(V)$ we define the tensor product $S \otimes T \in J^{k+l}(V)$ by

 $S \otimes T(v_1, ..., v_k, v_{k+1}, ..., v_{k+l}) = S(v_1, ..., v_k) T(v_{k+1}, ..., v_{k+l})$

Definition 1.3: If $f: V \to W$ is a linear transformation, a linear transformation $f^*: J^k(W) \to J^k(V)$ is defined by

$$f^*T(v_1, ..., v_k) = T(f(v_1), ..., f(v_k))$$
 for $T \in J^k(W)$ and $v_1, ..., v_k \in V$.

There are well known tensors aside from members of dual space V^* . The inner product $\langle , \rangle \in J^2(\mathbb{R}^n)$ is the first example. The usual inner product on \mathbb{R}^n is symmetric and positive definite 2-tensor. Despite its importance the inner product plays for lesser role than another familiar function, the tensor $det \in J^n(\mathbb{R}^n)$ which is alternating n- tensor. We denote alternating k-tensors on V by $\Lambda^k(V)$ which has dimension $\binom{n}{k} = \frac{n!}{k!(n-k)!}$ where n is the dimension of V. If n = k then $\Lambda^n(V)$ has dimension 1. Thus all alternating n-tensors on V are multiples of any non-zero one. Since the determinant is an example of such a member of $\Lambda^n(\mathbb{R}^n)$.

2. PRELIMINARIES

Theorem 2.1 Let $v_1, ..., v_n$ be a basis for V and let $\omega \in \Lambda^n(V)$. If $\omega_i = \sum_{j=1}^n a_{ij}v_j$ are n vectors in V then $\omega(\omega_1, ..., \omega_n) = \det(a_{ij}) \, \omega(\omega_1, ..., \omega_n)$. An orientation for V is depend on the sign of det A. If an orientation μ for V has been given, it follows that there is a unique $\omega \in \Lambda^n(V)$ such that $\omega(v_1, ..., v_n) = 1$ whenever $v_1, ..., v_n$ is an orthonormal basis such that $[v_1, ..., v_n] = \mu$. This unique ω is called the volume element of V, determined by the inner product T and orientation μ . Note that det is the volume element of \mathbb{R}^n determined by the usual inner product and usual orientation, and that $|\det(v_1, ..., v_n)|$ is the volume of the parallelpiped spanned by the line segments from 0 to each $v_1, ..., v_n$.

If $v_1, \dots, v_{n-1} \in \mathbb{R}^n$ and φ is defined by

$$\varphi(\omega) = det \begin{pmatrix} v_1 \\ \vdots \\ v_{n-1} \\ \omega \end{pmatrix} \text{ then } \varphi \in \Lambda^1(\mathbb{R}^n) \text{ ; therefore there is a unique } z \in \mathbb{R}^n \text{ such that}$$
$$< \omega, z >= \varphi(\omega) = det \begin{pmatrix} v_1 \\ \vdots \\ v_{n-1} \\ \omega \end{pmatrix}. \text{ This z is denoted } v_1 \times \dots \times v_{n-1} \text{ and called the cross product of } v_1, \dots, v_{n-1}.$$

In the case of two vectors $v_1, v_2 \in \mathbb{R}^3$

$$<\omega, z > = \varphi(\omega) = det \begin{pmatrix} v_1 \\ v_2 \\ \omega \end{pmatrix}$$
$$<\omega, z > = \omega_1 z_1 + \omega_2 z_2 + \omega_3 z_3$$

$$det \begin{pmatrix} v_1 \\ v_2 \\ \omega \end{pmatrix} = \begin{vmatrix} v_{11} & v_{12} & v_{13} \\ v_{21} & v_{22} & v_{23} \\ \omega_1 & \omega_2 & \omega_3 \end{vmatrix} = \omega_1 \begin{vmatrix} v_{12} & v_{13} \\ v_{22} & v_{23} \end{vmatrix} - \omega_2 \begin{vmatrix} v_{11} & v_{13} \\ v_{21} & v_{23} \end{vmatrix} + \omega_3 \begin{vmatrix} v_{11} & v_{12} \\ v_{21} & v_{22} \end{vmatrix} \Rightarrow$$

$$z_1 = v_{12}v_{23} - v_{22}v_{13}$$
, $z_2 = v_{21}v_{13} - v_{11}v_{23}$, $z_3 = v_{11}v_{22} - v_{12}v_{21}$ which means
 $z = (z_1, z_2, z_3) = v_1 \times v_2$

In the case of one vector $v_1 \in \mathbb{R}^2$

$$\langle \omega, z \rangle = \omega_1 z_1 + \omega_2 z_2$$
$$det \begin{pmatrix} v_1 \\ \omega \end{pmatrix} = \begin{vmatrix} v_{11} & v_{12} \\ \omega_1 & \omega_2 \end{vmatrix} = \omega_2 v_{11} - \omega_1 v_{12} \Rightarrow z_1 = -v_{12} \text{ and } z_2 = v_{11} \text{ which means}$$
$$z = (-v_{12}, v_{11}) \text{ is } v_1 \times$$

In the case of three vector $v_1, v_2, v_3 \in \mathbb{R}^4$

$$< \omega, z > = \omega_1 z_1 + \omega_2 z_2 + \omega_3 z_3 + \omega_4 z_4$$

$$det \begin{pmatrix} v_1 \\ v_2 \\ v_3 \\ \omega \end{pmatrix} = \begin{vmatrix} v_{11} & v_{12} & v_{13} & v_{14} \\ v_{21} & v_{22} & v_{23} & v_{24} \\ v_{31} & v_{32} & v_{33} & v_{34} \\ \omega_1 & \omega_2 & \omega_3 & \omega_4 \end{vmatrix}$$
$$= -\omega_1 |V_{41}| + \omega_2 |V_{42}| - \omega_3 |V_{43}| + \omega_4 |V_{44}|$$

 $z_1 = -|V_{41}|$ $z_2 = |V_{42}|$ $z_3 = -|V_{43}|$ $z_4 = |V_{44}|$ which means

 $z = (z_1, z_2, z_3, z_4) = v_1 \times v_2 \times v_3$.

By similar way if $\omega \in \Lambda^n(V)$ is a volume element we can define a "cross product" $v_1 \times ... \times v_{n-1}$ in terms of ω . [2]

Definition 2.1 Let L_1^3 be the three dimensional Lorentz-Minkowski space, that is the real vector space \mathbb{R}^3 endowed with the Lorentzian metric \langle , \rangle_L given by $\langle , \rangle_L = dx_1^2 + dx_2^2 - dx_3^2$ where (x_1, x_2, x_3) are the canonical coordinates of \mathbb{R}^3 . Associated to that metric one has the cross product of two vectors $v_1, v_2 \in L_1^3$ given by

$$v_1 \times v_2 = (v_{12}v_{23} - v_{22}v_{13}, v_{21}v_{13} - v_{11}v_{23}, v_{21}v_{12} - v_{11}v_{22})$$
. [3]

We can get the same result by using the method in [2]. Similarly cross product could be defined for one vector $v_1 \in L_1^2$ and three vectors $v_1, v_2, v_3 \in L_1^4$. In general n - 1 vectors $v_1, ..., v_{n-1} \in L_1^n$.

3. CROSS PRODUCT OF VECTORS IN L^{n_1}

Theorem 3.1 If $v_1, v_2 \in L_1^3$ and φ is defined by $\varphi(\omega) = det \begin{pmatrix} v_1 \\ v_2 \\ \omega \end{pmatrix}$ and $\varphi \in \Lambda^1(L_1^3)$ they there is a unique $z \in L_1^3$ such that $\langle \omega, z \rangle_L = \varphi(\omega) = det \begin{pmatrix} v_1 \\ v_2 \\ \omega \end{pmatrix}$ this z is denoted $v_1 \times_L v_2$ and called the cross product of v_1, v_2 .

Proof: Let $v_1, v_2 \in L_1^3$ and φ is defined by $\varphi(\omega) = det \begin{pmatrix} v_1 \\ v_2 \\ \omega \end{pmatrix}$ where $\varphi \in \Lambda^1(L_1^3)$ for $z \in L_1^3$ we have $\langle \omega, z \rangle_L = \omega_1 z_1 + \omega_2 z_2 - \omega_3 z_3$ and

$$det \begin{pmatrix} v_1 \\ v_2 \\ \omega \end{pmatrix} = \begin{vmatrix} v_{11} & v_{12} & v_{13} \\ v_{21} & v_{22} & v_{23} \\ \omega_1 & \omega_2 & \omega_3 \end{vmatrix} = \omega_1 \begin{vmatrix} v_{12} & v_{13} \\ v_{22} & v_{23} \end{vmatrix} - \omega_2 \begin{vmatrix} v_{11} & v_{13} \\ v_{21} & v_{23} \end{vmatrix} + \omega_3 \begin{vmatrix} v_{11} & v_{12} \\ v_{21} & v_{22} \end{vmatrix}$$

$$<\omega, z>_{L} = det \begin{pmatrix} v_{1} \\ v_{2} \\ \omega \end{pmatrix} \Rightarrow \begin{matrix} z_{1} = v_{12}v_{23} - v_{22}v_{13} \\ z_{2} = v_{21}v_{13} - v_{11}v_{23} \\ z_{3} = v_{21}v_{12} - v_{11}v_{12} \end{matrix}$$

It is clear that $z = (z_1, z_2, z_3)$ is the unique element that satisfies the equation and by [2] it is the cross product of v_1 and v_2

Result 1: In the case of one vector $v_1 \in L_1^2$;

<
$$\omega, z >_{L} = \omega_{1} z_{1} - \omega_{2} z_{2}$$

 $det \begin{pmatrix} v_{1} \\ \omega \end{pmatrix} = \begin{vmatrix} v_{11} & v_{12} \\ \omega_{1} & \omega_{2} \end{vmatrix} = \omega_{2} v_{11} - \omega_{1} v_{12} \Rightarrow z_{1} = -v_{12} \text{ and } z_{2} = -v_{11} \text{ which means}$
 $z = (-v_{12}, -v_{11}) \text{ is } v_{1} \times.$

Result 2: In the case of three vectors $v_1, v_2, v_3 \in L_1^4$;

 $< \omega, z >_L = \omega_1 z_1 + \omega_2 z_2 + \omega_3 z_3 - \omega_4 z_4$

$$det \begin{pmatrix} v_1 \\ v_2 \\ v_3 \\ \omega \end{pmatrix} = \begin{vmatrix} v_{11} & v_{12} & v_{13} & v_{14} \\ v_{21} & v_{22} & v_{23} & v_{24} \\ v_{31} & v_{32} & v_{33} & v_{34} \\ \omega_1 & \omega_2 & \omega_3 & \omega_4 \end{vmatrix}$$

 $= -\omega_1 |V_{41}| + \omega_2 |V_{42}| - \omega_3 |V_{43}| + \omega_4 |V_{44}|$ where V_{ij} is the minor of the entry ω_j

 $z_1 = -|V_{41}|$ $z_2 = |V_{42}|$ $z_3 = -|V_{43}|$ $z_4 = -|V_{44}|$ which means

$$z = (z_1, z_2, z_3, z_4) = v_1 \times_L v_2 \times_L v_3.$$

Result 3: Similarly in the case of n - 1 vectors $v_1, ..., v_{n-1} \in L_1^n$; one can define a cross product $v_1 \times_L ... \times_L v_{n-1}$ in terms of ω .

REFERENCES

- 1. E.Bertschinger, Introduction to Tensor Calculus for General Relativity, Massachusetts Institute of Technology Department of Physics (1999).
- 2. M. Spivak, Calculus on Manifolds, Addison-Wesley Publishing Company (1965).
- 3. Juan A. Aledo, Jose M.Espinar, Jose A. Galvez, Timelike Surfaces in the LorentzMinkowski Space With Prescribed Gaussian Curvature and Gauss Map, Journal of Geometry and Physics. 56 (2006) 1357-1369.